
Lecture 2: Exploration and Exploitation

Hado van Hasselt

Reinforcement learning, 2021

Background

Recommended reading:
Sutton & Barto 2018, Chapter 2

Further background material:
Bandit Algorithms, Lattimore & Szepesvári, 2020
Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi, Fischer, 2002

Recap

I Reinforcement learning is the science of learning to make decisions
I Agents can learn a policy, value function and/or a model
I The general problem involves taking into account time and consequences
I Decisions affect the reward, the agent state, and environment state
I Learning is active: decisions impact data

This Lecture

In this lecture, we simplify the setting
I The environment is assumed to have only a single state
I =⇒ actions no longer have long-term consequences in the environment
I =⇒ actions still do impact immediate reward
I =⇒ other observations can be ignored
I We discuss how to learn a policy in this setting

Blackboard:
Example

Exploration vs. Exploitation

I Learning agents need to trade off two things
I Exploitation: Maximise performance based on current knowledge
I Exploration: Increase knowledge

I We need to gather information to make the best overall decisions
I The best long-term strategy may involve short-term sacrifices

Formalising the problem

The Multi-Armed Bandit

I A multi-armed bandit is a set of distributions {Ra |a ∈ A}

I A is a (known) set of actions (or “arms")
I Ra is a distribution on rewards, given action a

I At each step t the agent selects an action At ∈ A

I The environment generates a reward Rt ∼ RAt

I The goal is to maximise cumulative reward
∑t

i=1 Ri

I We do this by learning a policy: a distribution on A

Values and Regret

I The action value for action a is the expected reward

q(a) = E [Rt |At = a]

I The optimal value is

v∗ = max
a∈A

q(a) = max
a

E [Rt | At = a]

I Regret of an action a is
∆a = v∗ − q(a)

I The regret for the optimal action is zero

Regret

I We want to minimise total regret:

Lt =

t∑
n=1

v∗ − q(An) =

t∑
n=1

∆An

I Maximise cumulative reward ≡ minimise total regret
I The summation spans over the full ‘lifetime of learning’

Algorithms

Algorithms

I We will discuss several algorithms:
I Greedy
I ϵ-greedy
I UCB
I Thompson sampling
I Policy gradients

I The first three all use action value estimates Qt(a) ≈ q(a)

Action values

I The action value for action a is the expected reward

q(a) = E [Rt |At = a]

I A simple estimate is the average of the sampled rewards:

Qt(a) =

∑t
n=1 I(An = a) Rn∑t
n=1 I(An = a)

I(·) is the indicator function: I(True) = 1 and I(False) = 0
I The count for action a is

Nt(a) =

t∑
n=1

I(An = a)

Action values

I This can also be updated incrementally:

Qt(At) = Qt−1(At) + αt (Rt − Qt−1(At))︸ ︷︷ ︸
error

,

∀a , At : Qt(a) = Qt−1(a)

with

αt =
1

Nt(At)
and Nt(At) = Nt−1(At) + 1 ,

where N0(a) = 0.
I We will later consider other step sizes α
I For instance, constant α would lead to tracking, rather than averaging

Algorithms: greedy

The greedy policy

I One of the simplest policies is greedy:
I Select action with highest value: At = argmax

a
Qt (a)

I Equivalently: πt (a) = I(At = argmax
a

Qt (a)) (assuming no ties are possible)

Example:
Regret of the greedy policy

Algorithms: ϵ-greedy

ϵ-Greedy Algorithm

I Greedy can get stuck on a suboptimal action forever
=⇒ linear expected total regret

I The ϵ-greedy algorithm:
I With probability 1 − ϵ select greedy action: a = argmax

a∈A
Qt (a)

I With probability ϵ select a random action
I Equivalently:

πt (a) =

{
(1 − ϵ) + ϵ/|A| if Qt (a) = maxb Qt (b)
ϵ/|A| otherwise

I ϵ-greedy continues to explore
⇒ ϵ-greedy with constant ϵ has linear expected total regret

Algorithms: Policy gradients

Policy search

I Can we learn policies π (a) directly, instead of learning values?
I For instance, define action preferences Ht(a) and a policy

π (a) =
eHt (a)∑
b eHt (b)

(softmax)

I The preferences are not values: they are just learnable policy parameters
I Goal: learn by optimising the preferences

Policy gradients

I Idea: update policy parameters such that expected value increases
I We can use gradient ascent
I In the bandit case, we want to update:

θt+1 = θt + α∇θE[Rt |πθt] ,

where θt are the current policy parameters
I Can we compute this gradient?

Gradient bandits
I Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

∇θ E[Rt |πθ] = ∇θ
∑
a

πθ (a)

= q(a)︷ ︸︸ ︷
E[Rt |At = a]

=
∑
a

q(a) ∇θπθ (a)

=
∑
a

q(a)
πθ (a)

πθ (a)
∇θπθ (a)

=
∑
a

πθ (a) q(a)
∇θπθ (a)

πθ (a)

= E

[
Rt
∇θπθ (At)

πθ (At)

]
= E [Rt∇θ log πθ (At)]

Gradient bandits

I Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

∇θE[Rt |θ] = E [Rt∇θ log πθ (At)]

I We can sample this!
I So

θ = θ + αRt∇θ log πθ (At) ,

this is stochastic gradient ascent on the (true) value of the policy
I Can use sampled rewards — does not need value estimates

Gradient bandits

I For soft max:

Ht+1(a) = Ht(a) + αRt
∂ log πt(At)

∂Ht(a)

= Ht(a) + αRt(I(a = At) − πt(a))

I ⇒

Ht+1(At) = Ht(At) + αRt(1 − πt(At))

Ht+1(a) = Ht(a) − αRtπt(a) if a , At

I Preferences for actions with higher rewards increase more (or decrease less), making
them more likely to be selected again

Theory: what is possible?

How well can we do?

Theorem (Lai and Robbins)
Asymptotic total regret is at least logarithmic in number of steps

lim
t→∞

Lt ≥ log t
∑

a |∆a>0

∆a

KL(Ra | |Ra∗)

(Note: KL(Ra | |Ra∗) ∝ ∆2
a)

I Note that regret grows at least logarithmically
I That’s still a whole lot better than linear growth! Can we get it in practice?
I Are there algorithms for which the upper bound is logarithmic as well?

Counting Regret

I Recall ∆a = v∗ − q(a)

I Total regret depends on action regrets ∆a and action counts

Lt =

t∑
n=1

∆An =
∑
a∈A

Nt(a)∆a

I A good algorithm ensures small counts for large action regrets

Optimism in the face of uncertainty

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p
ro

b
a
b
ili

ty
 d

e
n
si

ty P[q(a1)]

P[q(a2)]

P[q(a3)]

I Which action should we pick?
I More uncertainty about its value: more important to explore that action

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty P[q(a1)]

P[q(a2)]

P[q(a3)]

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Optimism in the Face of Uncertainty

4 2 0 2 4
expected value

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
ro

b
a
b
ili

ty
 d

e
n
si

ty

Algorithms: UCB

Upper Confidence Bounds

I Estimate an upper confidence Ut(a) for each action value,
such that q(a) ≤ Qt(a) + Ut(a) with high probability

I Select action maximizing upper confidence bound (UCB)

at = argmax
a∈A

Qt(a) + Ut(a)

I The uncertainty should depend on the number of times Nt(a) action a has been selected
I Small Nt (a) ⇒ large Ut (a) (estimated value is uncertain)
I Large Nt (a) ⇒ small Ut (a) (estimated value is accurate)

I Then a is only selected if either...
I ...Qt (a) is large (=good action), or
I ...Ut (a) is large (=high uncertainty) (or both)

I Can we derive an optimal bound?

Theory: the optimality of UCB

Hoeffding’s Inequality

Theorem (Hoeffding’s Inequality)
Let X1, ...,Xn be i.i.d. random variables in [0,1] with true mean µ = E[X],
and let X t =

1
n

∑n
i=1 Xi be the sample mean. Then

p
(
X n + u ≤ µ

)
≤ e−2nu

2

I We can apply Hoeffding’s Inequality to bandits with bounded rewards
I If Rt ∈ [0, 1], then

p (Qt(a) + Ut(a) ≤ q(a)) ≤ e−2Nt (a)Ut (a)
2

I By symmetry, we can also flip it around

p (Qt(a) − Ut(a) ≥ q(a)) ≤ e−2Nt (a)Ut (a)
2

Calculating Upper Confidence Bounds

I We can pick a maximal desired probability p that the true value
exceeds an upper bound and solve for this bound Ut(a)

e−2Nt (a)Ut (a)
2
= p

=⇒ Ut(a) =

√
− log p

2Nt(a)

We then know the probability that this happens is smaller than p

I Idea: reduce p as we observe more rewards, e.g., p = 1/t

Ut(a) =

√
log t

2Nt(a)

I This ensures that we always keep exploring, but not too much

UCB

I UCB:

at = argmax
a∈A

Qt(a) + c

√
log t

Nt(a)

I Intuition:
I If ∆a is large, then Nt (a) is small, because Qt (a) is likely to be small
I So either ∆a is small or Nt (a) is small
I In fact, we can prove ∆aNt (a) ≤ O(log t), for all a

UCB

I UCB:

at = argmax
a∈A

Qt(a) + c

√
log t

Nt(a)

where c is a hyper-parameter

Theorem (Auer et al., 2002)
UCB with c =

√
2 achieves logarithmic expected total regret

Lt ≤ 8
∑

a |∆a>0

log t

∆a
+ O(

∑
a

∆a) , ∀t .

Blackboard:
UCB derivation

Bayesian approaches

Bayesian Bandits

I We could adopt Bayesian approach and model distributions over values p(q(a) | θt)
I This is interpreted as our belief that, e.g., q(a) = x for all x ∈ R
I E.g., θt could contain the means and variances of Gaussian belief distributions
I Allows us to inject rich prior knowledge θ0

I We can then use posterior belief to guide exploration

Bayesian Bandits: Example

I Consider bandits with Bernoulli reward distribution: rewards are 0 or +1
I For each action, the prior could be a uniform distribution on [0, 1]
I This means we think each value in [0, 1] is equally likely
I The posterior is a Beta distribution Beta(xa, ya) with initial parameters xa = 1 and ya = 1

for each action a

I Updating the posterior:
I xAt

← xAt
+ 1 when Rt = 0

I yAt
← yAt

+ 1 when Rt = 1

Bayesian Bandits: Example

Suppose: R1 = +1, R2 = +1, R3 = 0, R4 = 0

Bayesian Bandits with Upper Confidence Bounds

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

Q

Q(a3)Q(a2)

Q(a1)

p!(Q)

c"(a3)
c"(a2)
c"(a1)

µ(a3)µ(a2)µ(a1)

I We can estimate upper confidences from the posterior
I e.g., Ut (a) = cσt (a) where σ (a) is std dev of pt (q(a))

I Then, pick an action that maximises Qt(a) + cσ (a)

Algorithms: Thompson sampling

Probability Matching

I A different option is to use probability matching:
Select action a according to the probability (belief) that a is optimal

πt(a) = p
(
q(a) = max

a′
q(a′) | Ht−1

)
I Probability matching is optimistic in the face of uncertainty:

Actions have higher probability when either the estimated value is high, or the
uncertainty is high

I Can be difficult to compute π (a) analytically from posterior (but can be done numerically)

Thompson Sampling

I Thompson sampling (Thompson 1933):
I Sample Qt (a) ∼ pt (q(a)), ∀a
I Select action maximising sample, At = argmax

a∈A
Qt (a)

I Thompson sampling is sample-based probability matching

πt(a) = E
[
I(Qt(a) = max

a′
Qt(a

′))

]
= p

(
q(a) = max

a′
q(a′)

)
I For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on

regret, and therefore is optimal

Planning to explore

Information State Space

I We have viewed bandits as one-step decision-making problems
I Can also view as sequential decision-making problems
I Each step the agent updates state St to summarise the past
I Each action At causes a transition to a new information state St+1 (by adding

information), with probability p(St+1 | At , St)

I We now have a Markov decision problem
I The state is fully internal to the agent
I State transitions are random due to rewards & actions
I Even in bandits actions affect the future after all, via learning

Example: Bernoulli Bandits

I Consider a Bernoulli bandit, such that

p (Rt = 1 | At = a) = µa

p (Rt = 0 | At = a) = 1 − µa

I E.g., win or lose a game with probability µa
I Want to find which arm has the highest µa
I The information state is I = (α , β)

I αa counts the pulls of arm a where reward was 0
I βa counts the pulls of arm a where reward was 1

Solving Information State Space Bandits

I We formulated the bandit as an infinite MDP over information states
I This can be solved by reinforcement learning
I E.g., learn a Bayesian reward distribution, plan into the future
I This is known as Bayes-adaptive RL:

optimally trades off exploration with respect to the prior distribution
I Can be extended to full RL, by also learning a transition model
I Can be unwieldy... unclear how to scale effectively

Example

End of lecture

