Lecture 2: Exploration and Exploitation

Hado van Hasselt

Reinforcement learning, 2021

Background

Recommended reading:
Sutton \& Barto 2018, Chapter 2

Further background material:
Bandit Algorithms, Lattimore \& Szepesvári, 2020
Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi, Fischer, 2002

Recap

- Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- The general problem involves taking into account time and consequences
- Decisions affect the reward, the agent state, and environment state
- Learning is active: decisions impact data

This Lecture

In this lecture, we simplify the setting

- The environment is assumed to have only a single state
$-\Longrightarrow$ actions no longer have long-term consequences in the environment
- \Longrightarrow actions still do impact immediate reward
- \Longrightarrow other observations can be ignored
- We discuss how to learn a policy in this setting

Blackboard: Example

Exploration vs. Exploitation

- Learning agents need to trade off two things
- Exploitation: Maximise performance based on current knowledge
- Exploration: Increase knowledge
- We need to gather information to make the best overall decisions
- The best long-term strategy may involve short-term sacrifices

Formalising the problem

The Multi-Armed Bandit

- A multi-armed bandit is a set of distributions $\left\{\mathcal{R}_{a} \mid a \in \mathcal{A}\right\}$
- \mathcal{A} is a (known) set of actions (or "arms")
- \mathcal{R}_{a} is a distribution on rewards, given action a
- At each step t the agent selects an action $A_{t} \in \mathcal{A}$
- The environment generates a reward $R_{t} \sim \mathcal{R}_{A_{t}}$
- The goal is to maximise cumulative reward $\sum_{i=1}^{t} R_{i}$
- We do this by learning a policy: a distribution on \mathcal{A}

Values and Regret

- The action value for action a is the expected reward

$$
q(a)=\mathbb{E}\left[R_{t} \mid A_{t}=a\right]
$$

- The optimal value is

$$
v_{*}=\max _{a \in \mathcal{A}} q(a)=\max _{a} \mathbb{E}\left[R_{t} \mid A_{t}=a\right]
$$

- Regret of an action a is

$$
\Delta_{a}=v_{*}-q(a)
$$

- The regret for the optimal action is zero

Regret

- We want to minimise total regret:

$$
L_{t}=\sum_{n=1}^{t} v_{*}-q\left(A_{n}\right)=\sum_{n=1}^{t} \Delta_{A_{n}}
$$

- Maximise cumulative reward \equiv minimise total regret
- The summation spans over the full 'lifetime of learning'

Algorithms

Algorithms

- We will discuss several algorithms:
- Greedy
- ϵ-greedy
- UCB
- Thompson sampling
- Policy gradients
- The first three all use action value estimates $Q_{t}(a) \approx q(a)$

Action values

- The action value for action a is the expected reward

$$
q(a)=\mathbb{E}\left[R_{t} \mid A_{t}=a\right]
$$

- A simple estimate is the average of the sampled rewards:

$$
Q_{t}(a)=\frac{\sum_{n=1}^{t} I\left(A_{n}=a\right) R_{n}}{\sum_{n=1}^{t} I\left(A_{n}=a\right)}
$$

$I(\cdot)$ is the indicator function: $I($ True $)=1$ and I (False) $=0$

- The count for action a is

$$
N_{t}(a)=\sum_{n=1}^{t} \mathcal{I}\left(A_{n}=a\right)
$$

Action values

- This can also be updated incrementally:

$$
\begin{aligned}
& Q_{t}\left(A_{t}\right)=Q_{t-1}\left(A_{t}\right)+\alpha_{t} \underbrace{\left(R_{t}-Q_{t-1}\left(A_{t}\right)\right)}_{\text {error }}, \\
& \forall a \neq A_{t}: Q_{t}(a)=Q_{t-1}(a)
\end{aligned}
$$

with

$$
\alpha_{t}=\frac{1}{N_{t}\left(A_{t}\right)} \quad \text { and } \quad N_{t}\left(A_{t}\right)=N_{t-1}\left(A_{t}\right)+1
$$

where $N_{0}(a)=0$.

- We will later consider other step sizes α
- For instance, constant α would lead to tracking, rather than averaging

Algorithms: greedy

The greedy policy

- One of the simplest policies is greedy:
- Select action with highest value: $A_{t}=\operatorname{argmax} Q_{t}(a)$
- Equivalently: $\pi_{t}(a)=\mathcal{I}\left(A_{t}=\operatorname{argmax} Q_{t}(a)\right)$ (assuming no ties are possible)

Example:
 Regret of the greedy policy

0

Algorithms: ϵ-greedy

ϵ-Greedy Algorithm

- Greedy can get stuck on a suboptimal action forever \Longrightarrow linear expected total regret
- The ϵ-greedy algorithm:
- With probability $1-\epsilon$ select greedy action: $a=\operatorname{argmax} Q_{t}(a)$
- With probability ϵ select a random action
- Equivalently:

$$
\pi_{t}(a)= \begin{cases}(1-\epsilon)+\epsilon /|\mathcal{A}| & \text { if } Q_{t}(a)=\max _{b} Q_{t}(b) \\ \epsilon /|\mathcal{A}| & \text { otherwise }\end{cases}
$$

- ϵ-greedy continues to explore $\Rightarrow \epsilon$-greedy with constant ϵ has linear expected total regret

Algorithms: Policy gradients

Policy search

- Can we learn policies $\pi(a)$ directly, instead of learning values?
- For instance, define action preferences $H_{t}(a)$ and a policy

$$
\pi(a)=\frac{\mathrm{e}^{H_{t}(a)}}{\sum_{b} \mathrm{e}^{H_{t}(b)}}
$$

- The preferences are not values: they are just learnable policy parameters
- Goal: learn by optimising the preferences

Policy gradients

- Idea: update policy parameters such that expected value increases
- We can use gradient ascent
- In the bandit case, we want to update:

$$
\theta_{t+1}=\theta_{t}+\alpha \nabla_{\theta} \mathbb{E}\left[R_{t} \mid \pi_{\theta_{t}}\right]
$$

where θ_{t} are the current policy parameters

- Can we compute this gradient?

Gradient bandits

- Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

$$
\begin{array}{rlr}
\nabla_{\theta} \mathbb{E}\left[R_{t} \mid \pi_{\theta}\right] & =\nabla_{\theta} \sum_{a} \pi_{\theta}(a) \overbrace{\mathbb{E}\left[R_{t} \mid A_{t}=a\right]}^{=q(a)} \\
& =\sum_{a} q(a) \nabla_{\theta} \pi_{\theta}(a) \\
& =\sum_{a} q(a) \frac{\pi_{\theta}(a)}{\pi_{\theta}(a)} \nabla_{\theta} \pi_{\theta}(a) & \\
& =\sum_{a} \pi_{\theta}(a) q(a) \frac{\nabla_{\theta} \pi_{\theta}(a)}{\pi_{\theta}(a)} \\
& =\mathbb{E}\left[R_{t} \frac{\nabla_{\theta} \pi_{\theta}\left(A_{t}\right)}{\pi_{\theta}\left(A_{t}\right)}\right] \quad=\mathbb{E}\left[R_{t} \nabla_{\theta} \log \pi_{\theta}\left(A_{t}\right)\right]
\end{array}
$$

Gradient bandits

- Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

$$
\nabla_{\theta} \mathbb{E}\left[R_{t} \mid \theta\right]=\mathbb{E}\left[R_{t} \nabla_{\theta} \log \pi_{\theta}\left(A_{t}\right)\right]
$$

- We can sample this!
- So

$$
\theta=\theta+\alpha R_{t} \nabla_{\theta} \log \pi_{\theta}\left(A_{t}\right)
$$

this is stochastic gradient ascent on the (true) value of the policy

- Can use sampled rewards - does not need value estimates

Gradient bandits

- For soft max:

$$
\begin{aligned}
H_{t+1}(a) & =H_{t}(a)+\alpha R_{t} \frac{\partial \log \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} \\
& =H_{t}(a)+\alpha R_{t}\left(I\left(a=A_{t}\right)-\pi_{t}(a)\right)
\end{aligned}
$$

- \Rightarrow

$$
\begin{aligned}
H_{t+1}\left(A_{t}\right) & =H_{t}\left(A_{t}\right)+\alpha R_{t}\left(1-\pi_{t}\left(A_{t}\right)\right) & \\
H_{t+1}(a) & =H_{t}(a)-\alpha R_{t} \pi_{t}(a) & \text { if } a \neq A_{t}
\end{aligned}
$$

- Preferences for actions with higher rewards increase more (or decrease less), making them more likely to be selected again

Theory: what is possible?

How well can we do?

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

$$
\lim _{t \rightarrow \infty} L_{t} \geq \log t \sum_{a \mid \Delta_{a}>0} \frac{\Delta_{a}}{K L\left(\mathcal{R}_{a}| | \mathcal{R}_{a^{*}}\right)}
$$

(Note: $\left.\operatorname{KL}\left(\mathcal{R}_{a} \| \mathcal{R}_{\mathrm{a}}{ }\right) \propto \Delta_{a}^{2}\right)$

- Note that regret grows at least logarithmically
- That's still a whole lot better than linear growth! Can we get it in practice?
- Are there algorithms for which the upper bound is logarithmic as well?

Counting Regret

- Recall $\Delta_{a}=v_{*}-q(a)$
- Total regret depends on action regrets Δ_{a} and action counts

$$
L_{t} \quad=\quad \sum_{n=1}^{t} \Delta_{A_{n}} \quad=\quad \sum_{a \in \mathcal{A}} N_{t}(a) \Delta_{a}
$$

- A good algorithm ensures small counts for large action regrets

Optimism in the face of uncertainty

Optimism in the Face of Uncertainty

- Which action should we pick?
- More uncertainty about its value: more important to explore that action

Optimism in the Face of Uncertainty

Algorithms: UCB

Upper Confidence Bounds

- Estimate an upper confidence $U_{t}(a)$ for each action value, such that $q(a) \leq Q_{t}(a)+U_{t}(a)$ with high probability
- Select action maximizing upper confidence bound (UCB)

$$
a_{t}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_{t}(a)+U_{t}(a)
$$

- The uncertainty should depend on the number of times $N_{t}(a)$ action a has been selected
- Small $N_{t}(a) \Rightarrow$ large $U_{t}(a)$ (estimated value is uncertain)
- Large $N_{t}(a) \Rightarrow$ small $U_{t}(a)$ (estimated value is accurate)
- Then a is only selected if either...
- $\ldots Q_{t}(a)$ is large (=good action), or
- $\ldots U_{t}(a)$ is large (=high uncertainty) (or both)
- Can we derive an optimal bound?

Theory: the optimality of UCB

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_{1}, \ldots, X_{n} be i.i.d. random variables in $[0,1]$ with true mean $\mu=\mathbb{E}[X]$, and let $\bar{X}_{t}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the sample mean. Then

$$
p\left(\bar{X}_{n}+u \leq \mu\right) \leq e^{-2 n u^{2}}
$$

- We can apply Hoeffding's Inequality to bandits with bounded rewards
- If $R_{t} \in[0,1]$, then

$$
p\left(Q_{t}(a)+U_{t}(a) \leq q(a)\right) \leq e^{-2 N_{t}(a) U_{t}(a)^{2}}
$$

- By symmetry, we can also flip it around

$$
p\left(Q_{t}(a)-U_{t}(a) \geq q(a)\right) \leq e^{-2 N_{t}(a) U_{t}(a)^{2}}
$$

Calculating Upper Confidence Bounds

- We can pick a maximal desired probability p that the true value exceeds an upper bound and solve for this bound $U_{t}(a)$

$$
\begin{aligned}
e^{-2 N_{t}(a) U_{t}(a)^{2}} & =p \\
\Longrightarrow \quad U_{t}(a) & =\sqrt{\frac{-\log p}{2 N_{t}(a)}}
\end{aligned}
$$

We then know the probability that this happens is smaller than p

- Idea: reduce p as we observe more rewards, e.g., $p=1 / t$

$$
U_{t}(a)=\sqrt{\frac{\log t}{2 N_{t}(a)}}
$$

- This ensures that we always keep exploring, but not too much

UCB

- UCB:

$$
a_{t}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_{t}(a)+c \sqrt{\frac{\log t}{N_{t}(a)}}
$$

- Intuition:
- If Δ_{a} is large, then $N_{t}(a)$ is small, because $Q_{t}(a)$ is likely to be small
- So either Δ_{a} is small or $N_{t}(a)$ is small
- In fact, we can prove $\Delta_{a} N_{t}(a) \leq O(\log t)$, for all a

UCB

- UCB:

$$
a_{t}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_{t}(a)+c \sqrt{\frac{\log t}{N_{t}(a)}}
$$

where c is a hyper-parameter
Theorem (Auer et al., 2002)
UCB with $c=\sqrt{2}$ achieves logarithmic expected total regret

$$
L_{t} \leq 8 \sum_{a \mid \Delta_{a}>0} \frac{\log t}{\Delta_{a}}+O\left(\sum_{a} \Delta_{a}\right), \quad \forall t .
$$

Blackboard:
 UCB derivation

0

Bayesian approaches

Bayesian Bandits

- We could adopt Bayesian approach and model distributions over values $p\left(q(a) \mid \theta_{t}\right)$
- This is interpreted as our belief that, e.g., $q(a)=x$ for all $x \in \mathbb{R}$
- E.g., θ_{t} could contain the means and variances of Gaussian belief distributions
- Allows us to inject rich prior knowledge θ_{0}
- We can then use posterior belief to guide exploration

Bayesian Bandits: Example

- Consider bandits with Bernoulli reward distribution: rewards are 0 or +1
- For each action, the prior could be a uniform distribution on $[0,1]$
- This means we think each value in $[0,1]$ is equally likely
- The posterior is a Beta distribution $\operatorname{Beta}\left(x_{a}, y_{a}\right)$ with initial parameters $x_{a}=1$ and $y_{a}=1$ for each action a
- Updating the posterior:
$-x_{A_{t}} \leftarrow x_{A_{t}}+1$ when $R_{t}=0$
$-y_{A_{t}} \leftarrow y_{A_{t}}+1$ when $R_{t}=1$

Bayesian Bandits: Example

Suppose: $R_{1}=+1, R_{2}=+1, R_{3}=0, R_{4}=0$

Bayesian Bandits with Upper Confidence Bounds

- We can estimate upper confidences from the posterior
- e.g., $U_{t}(a)=c \sigma_{t}(a)$ where $\sigma(a)$ is std dev of $p_{t}(q(a))$
- Then, pick an action that maximises $Q_{t}(a)+c \sigma(a)$

Algorithms: Thompson sampling

Probability Matching

- A different option is to use probability matching:

Select action a according to the probability (belief) that a is optimal

$$
\pi_{t}(a)=p\left(q(a)=\max _{a^{\prime}} q\left(a^{\prime}\right) \mid \mathcal{H}_{t-1}\right)
$$

- Probability matching is optimistic in the face of uncertainty:

Actions have higher probability when either the estimated value is high, or the uncertainty is high

- Can be difficult to compute $\pi(a)$ analytically from posterior (but can be done numerically)

Thompson Sampling

- Thompson sampling (Thompson 1933):
- Sample $Q_{t}(a) \sim p_{t}(q(a)), \forall a$
- Select action maximising sample, $A_{t}=\operatorname{argmax} Q_{t}(a)$
- Thompson sampling is sample-based probability matching

$$
\begin{aligned}
\pi_{t}(a) & =\mathbb{E}\left[\mathcal{I}\left(Q_{t}(a)=\max _{a^{\prime}} Q_{t}\left(a^{\prime}\right)\right)\right] \\
& =p\left(q(a)=\max _{a^{\prime}} q\left(a^{\prime}\right)\right)
\end{aligned}
$$

- For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on regret, and therefore is optimal

Planning to explore

Information State Space

- We have viewed bandits as one-step decision-making problems
- Can also view as sequential decision-making problems
- Each step the agent updates state S_{t} to summarise the past
- Each action A_{t} causes a transition to a new information state S_{t+1} (by adding information), with probability $p\left(S_{t+1} \mid A_{t}, S_{t}\right)$
- We now have a Markov decision problem
- The state is fully internal to the agent
- State transitions are random due to rewards \& actions
- Even in bandits actions affect the future after all, via learning

Example: Bernoulli Bandits

- Consider a Bernoulli bandit, such that

$$
\begin{aligned}
& p\left(R_{t}=1 \mid A_{t}=a\right)=\mu_{a} \\
& p\left(R_{t}=0 \mid A_{t}=a\right)=1-\mu_{a}
\end{aligned}
$$

- E.g., win or lose a game with probability μ_{a}
- Want to find which arm has the highest μ_{a}
- The information state is $I=(\boldsymbol{\alpha}, \boldsymbol{\beta})$
- α_{a} counts the pulls of arm a where reward was 0
- β_{a} counts the pulls of arm a where reward was 1

Solving Information State Space Bandits

- We formulated the bandit as an infinite MDP over information states
- This can be solved by reinforcement learning
- E.g., learn a Bayesian reward distribution, plan into the future
- This is known as Bayes-adaptive RL: optimally trades off exploration with respect to the prior distribution
- Can be extended to full RL, by also learning a transition model
- Can be unwieldy... unclear how to scale effectively

Example

End of lecture

