Lecture 2: Exploration and Exploitation

Hado van Hasselt

Reinforcement learning, 2021

(o)

Background

Recommended reading:
Sutton & Barto 2018, Chapter 2

Further background material:
Bandit Algorithms, Lattimore & Szepesvari, 2020
Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi, Fischer, 2002

(o)

Recap

environment

agent Suon

ose"
. /_
k

Reinforcement learning is the science of learning to make decisions

Agents can learn a policy, value function and/or a model
The general problem involves taking into account time and consequences
Decisions affect the reward, the agent state, and environment state

Learning is active: decisions impact data

(o)

This Lecture

In this lecture, we simplify the setting
> The environment is assumed to have only a single state
» — actions no longer have long-term consequences in the environment
» — actions still do impact immediate reward
» — other observations can be ignored
> We discuss how to learn a policy in this setting

(o)

Blackboard:
Example

(o)

Exploration vs. Exploitation

> Learning agents need to trade off two things

> Exploitation: Maximise performance based on current knowledge
> Exploration: Increase knowledge

> We need to gather information to make the best overall decisions

» The best long-term strategy may involve short-term sacrifices

(o)

Formalising the problem

(o)

The Multi-Armed Bandit

A multi-armed bandit is a set of distributions {R,|a € A}
A is a (known) set of actions (or “arms")

R, is a distribution on rewards, given action a

At each step t the agent selects an action A; € A

The environment generates a reward Ry ~ Ra,

The goal is to maximise cumulative reward Y/_; R;

vV VvV VvV VY VvV vy

We do this by learning a policy: a distribution on A

(o)

Values and Regret

» The action value for action a is the expected reward
q(a) = E[R|A; = a]
» The optimal value is

vi = maxqg(a) = maxE[R: | A: = a]
acA a

> Regret of an action a is
As = v —q(a)

» The regret for the optimal action is zero

(o)

Regret

> We want to minimise total regret:

t

Le=) ve—q(Ay) = Z A,
n=1

n=1

> Maximise cumulative reward = minimise total regret

» The summation spans over the full ‘lifetime of learning’

(o)

Algorithms

(o)

Algorithms

» We will discuss several algorithms:
> Greedy

> e-greedy

> UCB

» Thompson sampling

> Policy gradients

> The first three all use action value estimates Q:(a) = g(a)

(o)

Action values

> The action value for action a is the expected reward
q(a) = E[Re|Ar = a]
> A simple estimate is the average of the sampled rewards:

2:1 I(An = a) Rn
2:1 I(An = a)

Qi(a) =

I (+) is the indicator function: 7 (True) = 1 and J (False) = 0
» The count for action a is

Ne(@) =) T(A, = a)
n=1

(o)

Action values

» This can also be updated incrementally:

Qi(Ar) = Qe-1(Ar) + & (Ry — Qe-1(Ar)),

—_—
error
Va# Ar : Qe(a) = Qe-1(a)
with
1
oy = Ne(AD) and Ne(Ae) = Ne—1(Ap) + 1,

where Ny(a) = 0.
> We will later consider other step sizes «

» For instance, constant ¢ would lead to tracking, rather than averaging

(o)

Algorithms: greedy

(o)

The greedy policy

> One of the simplest policies is greedy:
> Select action with highest value: A; = argmax Q:(a)

a
> Equivalently: 7¢(a) = 7 (A; = argmax Q¢(a)) (assuming no ties are possible)
a

(o)

Example:
Regret of the greedy policy

(o)

(o)

Algorithms: e-greedy

(o)

e-Greedy Algorithm

» Greedy can get stuck on a suboptimal action forever
— linear expected total regret

» The e-greedy algorithm:
> With probability 1 — € select greedy action: a = argmax Q¢(a)

acA
> With probability € select a random action
> Equivalently:
(@) = (1-e)+e/|A| if Qi(a) = maxp Q:(b)
8y e/ Al otherwise

> e-greedy continues to explore
= e-greedy with constant € has linear expected total regret

(o)

Algorithms: Policy gradients

(o)

Policy search

> Can we learn policies 7(a) directly, instead of learning values?
> For instance, define action preferences H,;(a) and a policy

th(a)

71'(8) = m (softmax)

> The preferences are not values: they are just learnable policy parameters

> Goal: learn by optimising the preferences

(o)

Policy gradients

> Idea: update policy parameters such that expected value increases
> We can use gradient ascent
» In the bandit case, we want to update:

Or11 = 0 + aVoE[R| 7o,],

where 0; are the current policy parameters

> Can we compute this gradient?

(o)

Gradient bandits

> Log-likelihood trick (also known as REINFORCE trick, Williams 1992):
=q(a)

—_——
Vo E[Re|mo] = Vo) 7o(a) E[Re|A; = a]

=2 4(3) Vomp(a)

= 3 a0 25 Voot

LT Toms)

:E[RtVeL(At)}

mo(Ae) = E[R.Vo log mg(A,)]

(o)

Gradient bandits

» Log-likelihood trick (also known as REINFORCE trick, Williams 1992):
VoE[R:|0] = E[R;Vg log mo(A;)]

» We can sample this!

> So
0=0+aRVglogmy(A,),

this is stochastic gradient ascent on the (true) value of the policy
» Can use sampled rewards — does not need value estimates

(o)

Gradient bandits

» For soft max:

a |0g ﬂ't(At)
0H:(a)

= Hi(a) + aR:(I(a = Ay) — m(a))

Hiia1(a) = Hi(a) + aR;

Her1(Ar) = Hi(Ar) + aRy(1 — 7:(Ar))
Hii1(a) = Hi(a) — aRemi(a) ifa# At

> Preferences for actions with higher rewards increase more (or decrease less), making
them more likely to be selected again

(o)

Theory: what is possible?

(o)

How well can we do?

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

A,
im Lz gt Y Do
t—00 a[A.>0 KL(Ra|IRa+)

(Note: KL(R,||Rz:) o« A2)
> Note that regret grows at least logarithmically
» That’s still a whole lot better than linear growth! Can we get it in practice?
> Are there algorithms for which the upper bound is logarithmic as well?

(o)

Counting Regret

> Recall A, = vi — g(a)
» Total regret depends on action regrets A, and action counts

Lt = Z Ag, - > Ne(@)A,

n=1 aeA

> A good algorithm ensures small counts for large action regrets

(o)

Optimism in the face of uncertainty

(o)

Optimism in the Face of Uncertainty

Plg(a;)]

o P B
© o N
—

probability density
o
[=2]

© O O «
o N b

expected value

» Which action should we pick?
> More uncertainty about its value: more important to explore that action

(o)

Optimism in the Face of Uncertainty

1.2
>
5 1.0
[
S os
>
£ 0.6
o)
204
o
o

o o
o N

-2

0
expected value

(o)

Optimism in the Face of Uncertainty

1.2
>
5 1.0
[
S os
>
£ 0.6
o)
204
o
o

o o
o N

-2

0
expected value

(o)

Optimism in the Face of Uncertainty

R
o N

0.8

o o
~ O

probability density

o o
o N

-2

0
expected value

(o)

Optimism in the Face of Uncertainty

probability density

o o
o N

R
o N

0.8

o o
~ O

-2 0 2 4
expected value @

Optimism in the Face of Uncertainty

1.2
>
5 1.0
[
S os
>
£ 0.6
o)
204
o
o

o o
o N

-2

0
expected value

(o)

Optimism in the Face of Uncertainty

R
o N

0.8

o o
~ O

probability density

o o
o N

-2 0 2 4
expected value

(o)

Optimism in the Face of Uncertainty

R
o N

0.8

o o
~ O

probability density

o o
o N

-2

0
expected value

(o)

Optimism in the Face of Uncertainty

R
o N

0.8

o o
~ O

probability density

o o
o N

expected value @

Algorithms: UCB

(o)

Upper Confidence Bounds

> Estimate an upper confidence U,(a) for each action value,
such that g(a) < Q:(a) + U:(a) with high probability

> Select action maximizing upper confidence bound (UCB)

a; = argmax Q¢(a) + Ue(a)
aeA

> The uncertainty should depend on the number of times N;(a) action a has been selected

> Small N¢(a) = large U:(a) (estimated value is uncertain)
> Large N:(a) = small Us(a) (estimated value is accurate)

» Then a is only selected if either...
> ...Q:(a) is large (=good action), or
> ...U:(a) is large (=high uncertainty) (or both)

» Can we derive an optimal bound?

(o)

Theory: the optimality of UCB

(o)

Hoeffding’s Inequality

Theorem (Hoeffding’s Inequality)
Let Xi, ..., X, be i.i.d. random variables in [0,1] with true mean u = E[X],
and let X; = % 1 Xi be the sample mean. Then

p (7,, +u< /1) < 2’

> We can apply Hoeffding’s Inequality to bandits with bounded rewards
> If R; € [0,1], then

P(Qi(a) + Ur(a) < q(a)) < e 2MUCT
> By symmetry, we can also flip it around

p(Qi(a) — Ue(a) = q(a)) < e 2Ne(@Ue(a)?

(o)

Calculating Upper Confidence Bounds

> We can pick a maximal desired probability p that the true value
exceeds an upper bound and solve for this bound U;(a)

e 2M@UER —

—logp

= V(@) =\ 2 a)

We then know the probability that this happens is smaller than p
> Idea: reduce p as we observe more rewards, e.g., p = 1/t

log t
2N;(a)

Ui(a) =

> This ensures that we always keep exploring, but not too much

(o)

UCB

> UCB:

log t
a; = argmax Q:(a) + ¢
i ageﬂ t() Nt(a)

» Intuition:
> If A, is large, then N¢(a) is small, because Q;(a) is likely to be small
> So either A, is small or N¢(a) is small
> In fact, we can prove A,;N:(a) < O(log t), for all a

(o)

UCB

> UCB:

log t
a; = argmax Q:(a) + ¢4 [——
t ageﬂ t() Nt(a)

where c is a hyper-parameter

Theorem (Auer et al., 2002)
UCB with ¢ = V2 achieves logarithmic expected total regret

L<8 Y "’Agt+0(ZAa), Vt.

alA,>0 2

(o)

Blackboard:
UCB derivation

(o)

(o)

Bayesian approaches

(o)

Bayesian Bandits

We could adopt Bayesian approach and model distributions over values p(q(a) | 6;)
This is interpreted as our belief that, e.g., g(a) = x for all x € R

E.g., 0; could contain the means and variances of Gaussian belief distributions
Allows us to inject rich prior knowledge 6,

vV v VvyVvVYyy

We can then use posterior belief to guide exploration

(o)

Bayesian Bandits: Example

» Consider bandits with Bernoulli reward distribution: rewards are 0 or +1
> For each action, the prior could be a uniform distribution on [0, 1]

> This means we think each value in [0, 1] is equally likely
>

The posterior is a Beta distribution Beta(x,, y,) with initial parameters x, = 1 and y, = 1
for each action a
» Updating the posterior:
> xp, ¢ x4, +1when Ry =0
> ya, < yA, +1when Ry =1

(o)

Bayesian Bandits: Example
Suppose: Ry =+1, Ro=+1,R3=0,R, =0

R=0: R=0: R=0: R=0:v R=0:vV
R=+1: R=+1:v R=+1:vv R=+1.vV R=+1:vv/

=)
=
1-
0
0 10 10 10 10 1

q q q q q

Bayesian Bandits with Upper Confidence Bounds

Po(Q)
I
! Q(ay)
Q(a,) LA
| [
Q(a) —/
I I
1 I
" 1 N
Q u@) p@) pa)
leo(ay)l
——cof(a,) —
f co(a,) |

> We can estimate upper confidences from the posterior
> e.g., Ui(a) = cot(a) where o(a) is std dev of p;(q(a))
» Then, pick an action that maximises Q;(a) + co(a)

(o)

Algorithms: Thompson sampling

(o)

Probability Matching

> A different option is to use probability matching:
Select action a according to the probability (belief) that a is optimal

m(@) = p(a(a) = maxa(a') | Ho-1)

» Probability matching is optimistic in the face of uncertainty:
Actions have higher probability when either the estimated value is high, or the
uncertainty is high

» Can be difficult to compute (a) analytically from posterior (but can be done numerically)

(o)

Thompson Sampling

» Thompson sampling (Thompson 1933):

> Sample Q:(a) ~ pt(q(a)), Va
> Select action maximising sample, A; = argmax Q:(a)
acA

» Thompson sampling is sample-based probability matching
7e(a) = E | T(Qu(a) = max ()|
=p (q(a) = max q(a’))

» For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on
regret, and therefore is optimal

(o)

Planning to explore

(o)

Information State Space

vV vyYyYyy

vV VvYyy

We have viewed bandits as one-step decision-making problems
Can also view as sequential decision-making problems
Each step the agent updates state S; to summarise the past

Each action A; causes a transition to a new information state S;,; (by adding
information), with probability p(Si+1 | A¢, St)

We now have a Markov decision problem

The state is fully internal to the agent

State transitions are random due to rewards & actions

Even in bandits actions affect the future after all, via learning

(o)

Example: Bernoulli Bandits

» Consider a Bernoulli bandit, such that

p(Re=1]A;
p(Re=01A:

a) = fa
a)=1-p,

> E.g., win or lose a game with probability p,
> Want to find which arm has the highest p,

» The information state is | = (&, f)

> a, counts the pulls of arm a where reward was 0
> [, counts the pulls of arm a where reward was 1

(o)

Solving Information State Space Bandits

vy vyYyy

v

We formulated the bandit as an infinite MDP over information states
This can be solved by reinforcement learning
E.g., learn a Bayesian reward distribution, plan into the future

This is known as Bayes-adaptive RL:
optimally trades off exploration with respect to the prior distribution

Can be extended to full RL, by also learning a transition model
Can be unwieldy... unclear how to scale effectively

(o)

Example

(o)

End of lecture

(o)

