Lecture 2: Exploration and Exploitation

Hado van Hasselt

Reinforcement learning, 2021
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Background

Recommended reading:
Sutton & Barto 2018, Chapter 2

Further background material:
Bandit Algorithms, Lattimore & Szepesvari, 2020
Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi, Fischer, 2002
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Reinforcement learning is the science of learning to make decisions

Agents can learn a policy, value function and/or a model
The general problem involves taking into account time and consequences
Decisions affect the reward, the agent state, and environment state

Learning is active: decisions impact data
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This Lecture

In this lecture, we simplify the setting
> The environment is assumed to have only a single state
» — actions no longer have long-term consequences in the environment
» — actions still do impact immediate reward
» — other observations can be ignored
> We discuss how to learn a policy in this setting
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Blackboard:
Example
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Exploration vs. Exploitation

> Learning agents need to trade off two things

> Exploitation: Maximise performance based on current knowledge
> Exploration: Increase knowledge

> We need to gather information to make the best overall decisions

» The best long-term strategy may involve short-term sacrifices
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Formalising the problem
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The Multi-Armed Bandit

A multi-armed bandit is a set of distributions {R,|a € A}
A is a (known) set of actions (or “arms")

R, is a distribution on rewards, given action a

At each step t the agent selects an action A; € A

The environment generates a reward Ry ~ Ra,

The goal is to maximise cumulative reward Y/_; R;
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We do this by learning a policy: a distribution on A
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Values and Regret

» The action value for action a is the expected reward
q(a) = E[R|A; = a]
» The optimal value is

vi = maxqg(a) = maxE[R: | A: = a]
acA a

> Regret of an action a is
As = v —q(a)

» The regret for the optimal action is zero
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Regret

> We want to minimise total regret:

t

Le= ) ve—q(Ay) = Z A,
n=1

n=1

> Maximise cumulative reward = minimise total regret

» The summation spans over the full ‘lifetime of learning’
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Algorithms
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Algorithms

» We will discuss several algorithms:
> Greedy

> e-greedy

> UCB

» Thompson sampling

> Policy gradients

> The first three all use action value estimates Q:(a) = g(a)
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Action values

> The action value for action a is the expected reward
q(a) = E[Re|Ar = a]
> A simple estimate is the average of the sampled rewards:

2:1 I(An = a) Rn
2:1 I(An = a)

Qi(a) =

I (+) is the indicator function: 7 (True) = 1 and J (False) = 0
» The count for action a is

Ne(@) = ) T(A, = a)
n=1
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Action values

» This can also be updated incrementally:

Qi(Ar) = Qe-1(Ar) + & (Ry — Qe-1(Ar)),

—_—
error
Va# Ar : Qe(a) = Qe-1(a)
with
1
oy = Ne(AD) and Ne(Ae) = Ne—1(Ap) + 1,

where Ny(a) = 0.
> We will later consider other step sizes «

» For instance, constant ¢ would lead to tracking, rather than averaging
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Algorithms: greedy
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The greedy policy

> One of the simplest policies is greedy:
> Select action with highest value: A; = argmax Q:(a)

a
> Equivalently: 7¢(a) = 7 (A; = argmax Q¢(a)) (assuming no ties are possible)
a
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Example:
Regret of the greedy policy

(o)



(o)



Algorithms: e-greedy
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e-Greedy Algorithm

» Greedy can get stuck on a suboptimal action forever
— linear expected total regret

» The e-greedy algorithm:
> With probability 1 — € select greedy action: a = argmax Q¢(a)

acA
> With probability € select a random action
> Equivalently:
(@) = (1-e)+e/|A| if Qi(a) = maxp Q:(b)
8y e/ Al otherwise

> e-greedy continues to explore
= e-greedy with constant € has linear expected total regret
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Algorithms: Policy gradients
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Policy search

> Can we learn policies 7(a) directly, instead of learning values?
> For instance, define action preferences H,;(a) and a policy

th(a)

71'(8) = m (softmax)

> The preferences are not values: they are just learnable policy parameters

> Goal: learn by optimising the preferences
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Policy gradients

> Idea: update policy parameters such that expected value increases
> We can use gradient ascent
» In the bandit case, we want to update:

Or11 = 0 + aVoE[R| 7o, ],

where 0; are the current policy parameters

> Can we compute this gradient?
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Gradient bandits

> Log-likelihood trick (also known as REINFORCE trick, Williams 1992):
=q(a)

—_——
Vo E[Re|mo] = Vo ) 7o(a) E[Re|A; = a]

=2 4(3) Vomp(a)

= 3 a0 25 Voot

LT Toms)

:E[RtVeL(At)}

mo(Ae) = E[R.Vo log mg(A,)]
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Gradient bandits

» Log-likelihood trick (also known as REINFORCE trick, Williams 1992):
VoE[R:|0] = E[R;Vg log mo(A;)]

» We can sample this!

> So
0=0+aRVglogmy(A,),

this is stochastic gradient ascent on the (true) value of the policy
» Can use sampled rewards — does not need value estimates
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Gradient bandits

» For soft max:

a |0g ﬂ't(At)
0H:(a)

= Hi(a) + aR:(I(a = Ay) — m(a))

Hiia1(a) = Hi(a) + aR;

Her1(Ar) = Hi(Ar) + aRy(1 — 7:(Ar))
Hii1(a) = Hi(a) — aRemi(a) ifa# At

> Preferences for actions with higher rewards increase more (or decrease less), making
them more likely to be selected again
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Theory: what is possible?
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How well can we do?

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

A,
im Lz gt Y Do
t—00 a[A.>0 KL(Ra|IRa+)

(Note: KL(R,||Rz:) o« A2)
> Note that regret grows at least logarithmically
» That’s still a whole lot better than linear growth! Can we get it in practice?
> Are there algorithms for which the upper bound is logarithmic as well?
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Counting Regret

> Recall A, = vi — g(a)
» Total regret depends on action regrets A, and action counts

Lt = Z Ag, - > Ne(@)A,

n=1 aeA

> A good algorithm ensures small counts for large action regrets
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Optimism in the face of uncertainty
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Optimism in the Face of Uncertainty
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» Which action should we pick?
> More uncertainty about its value: more important to explore that action
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Optimism in the Face of Uncertainty
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Optimism in the Face of Uncertainty
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Optimism in the Face of Uncertainty
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Optimism in the Face of Uncertainty
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Optimism in the Face of Uncertainty
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Algorithms: UCB
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Upper Confidence Bounds

> Estimate an upper confidence U,(a) for each action value,
such that g(a) < Q:(a) + U:(a) with high probability

> Select action maximizing upper confidence bound (UCB)

a; = argmax Q¢(a) + Ue(a)
aeA

> The uncertainty should depend on the number of times N;(a) action a has been selected

> Small N¢(a) = large U:(a) (estimated value is uncertain)
> Large N:(a) = small Us(a) (estimated value is accurate)

» Then a is only selected if either...
> ...Q:(a) is large (=good action), or
> ...U:(a) is large (=high uncertainty) (or both)

» Can we derive an optimal bound?
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Theory: the optimality of UCB
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Hoeffding’s Inequality

Theorem (Hoeffding’s Inequality)
Let Xi, ..., X, be i.i.d. random variables in [0,1] with true mean u = E[X],
and let X; = % 1 Xi be the sample mean. Then

p (7,, +u< /1) < 2’

> We can apply Hoeffding’s Inequality to bandits with bounded rewards
> If R; € [0,1], then

P(Qi(a) + Ur(a) < q(a)) < e 2MUCT
> By symmetry, we can also flip it around

p(Qi(a) — Ue(a) = q(a)) < e 2Ne(@Ue(a)?
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Calculating Upper Confidence Bounds

> We can pick a maximal desired probability p that the true value
exceeds an upper bound and solve for this bound U;(a)

e 2M@UER —

—logp

= V(@) =\ 2 a)

We then know the probability that this happens is smaller than p
> Idea: reduce p as we observe more rewards, e.g., p = 1/t

log t
2N;(a)

Ui(a) =

> This ensures that we always keep exploring, but not too much
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UCB

> UCB:

log t
a; = argmax Q:(a) + ¢
i ageﬂ t( ) Nt(a)

» Intuition:
> If A, is large, then N¢(a) is small, because Q;(a) is likely to be small
> So either A, is small or N¢(a) is small
> In fact, we can prove A,;N:(a) < O(log t), for all a
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UCB

> UCB:

log t
a; = argmax Q:(a) + ¢4 [——
t ageﬂ t( ) Nt(a)

where c is a hyper-parameter

Theorem (Auer et al., 2002)
UCB with ¢ = V2 achieves logarithmic expected total regret

L<8 Y "’Agt+0(ZAa), Vt.

alA,>0 2
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Blackboard:
UCB derivation
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Bayesian approaches
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Bayesian Bandits

We could adopt Bayesian approach and model distributions over values p(q(a) | 6;)
This is interpreted as our belief that, e.g., g(a) = x for all x € R

E.g., 0; could contain the means and variances of Gaussian belief distributions
Allows us to inject rich prior knowledge 6,

vV v VvyVvVYyy

We can then use posterior belief to guide exploration

(o)



Bayesian Bandits: Example

» Consider bandits with Bernoulli reward distribution: rewards are 0 or +1
> For each action, the prior could be a uniform distribution on [0, 1]

> This means we think each value in [0, 1] is equally likely
>

The posterior is a Beta distribution Beta(x,, y,) with initial parameters x, = 1 and y, = 1
for each action a
» Updating the posterior:
> xp, ¢ x4, +1when Ry =0
> ya, < yA, +1when Ry =1
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Bayesian Bandits: Example
Suppose: Ry =+1, Ro=+1,R3=0,R, =0

R=0: R=0: R=0: R=0:v R=0:vV
R=+1: R=+1:v R=+1:vv R=+1.vV R=+1:vv/

=)
=
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0
0 10 10 10 10 1

q q q q q



Bayesian Bandits with Upper Confidence Bounds
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> We can estimate upper confidences from the posterior
> e.g., Ui(a) = cot(a) where o(a) is std dev of p;(q(a))
» Then, pick an action that maximises Q;(a) + co(a)
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Algorithms: Thompson sampling
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Probability Matching

> A different option is to use probability matching:
Select action a according to the probability (belief) that a is optimal

m(@) = p(a(a) = maxa(a') | Ho-1)

» Probability matching is optimistic in the face of uncertainty:
Actions have higher probability when either the estimated value is high, or the
uncertainty is high

» Can be difficult to compute (a) analytically from posterior (but can be done numerically)

(o)



Thompson Sampling

» Thompson sampling (Thompson 1933):

> Sample Q:(a) ~ pt(q(a)), Va
> Select action maximising sample, A; = argmax Q:(a)
acA

» Thompson sampling is sample-based probability matching
7e(a) = E | T(Qu(a) = max ()|
=p (q(a) = max q(a’))

» For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on
regret, and therefore is optimal
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Planning to explore
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Information State Space
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We have viewed bandits as one-step decision-making problems
Can also view as sequential decision-making problems
Each step the agent updates state S; to summarise the past

Each action A; causes a transition to a new information state S;,; (by adding
information), with probability p(Si+1 | A¢, St)

We now have a Markov decision problem

The state is fully internal to the agent

State transitions are random due to rewards & actions

Even in bandits actions affect the future after all, via learning
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Example: Bernoulli Bandits

» Consider a Bernoulli bandit, such that

p(Re=1]A;
p(Re=01A:

a) = fa
a)=1-p,

> E.g., win or lose a game with probability p,
> Want to find which arm has the highest p,

» The information state is | = (&, f)

> a, counts the pulls of arm a where reward was 0
> [, counts the pulls of arm a where reward was 1
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Solving Information State Space Bandits
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We formulated the bandit as an infinite MDP over information states
This can be solved by reinforcement learning
E.g., learn a Bayesian reward distribution, plan into the future

This is known as Bayes-adaptive RL:
optimally trades off exploration with respect to the prior distribution

Can be extended to full RL, by also learning a transition model
Can be unwieldy... unclear how to scale effectively
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Example
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End of lecture
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