
Lecture 3:
Markov Decision Processes and Dynamic Programming

Diana Borsa

January 15, 2021

Background

Sutton & Barto 2018, Chapter 3 + 4

Recap

I Reinforcement learning is the science of learning to make decisions

I Agents can learn a policy, value function and/or a model

I The general problem involves taking into account time and consequences

I Decisions affect the reward, the agent state, and environment state

This Lecture

I Last lecture: multiple actions, but only one state—no model
I This lecture:

I Formalise the problem with full sequential structure
I Discuss first class of solution methods which assume true model is given
I These methods are called dynamic programming

I Next lectures: use similar ideas, but use sampling instead of true model

Formalising the RL interaction

Formalising the RL interface

I We will discuss a mathematical formulation of the agent-environment interaction

I This is called a Markov Decision Process (MDP)

I Enables us to talk clearly about the objective and how to achieve it

MDPs: A simplifying assumption

I For now, assume the environment is fully observable:
⇒ the current observation contains all relevant information

I Note: Almost all RL problems can be formalised as MDPs, e.g.,
I Optimal control primarily deals with continuous MDPs
I Partially observable problems can be converted into MDPs
I Bandits are MDPs with one state

Markov Decision Process

Definition (Markov Decision Process - Sutton & Barto 2018)

A Markov Decision Process is a tuple (S,A, p, γ), where

I S is the set of all possible states

I A is the set of all possible actions (e.g., motor controls)

I p(r , s ′ | s, a) is the joint probability of a reward r and next state s ′, given a state s
and action a

I γ ∈ [0, 1] is a discount factor that trades off later rewards to earlier ones

Observations:

I p defines the dynamics of the problem

I Sometimes it is useful to marginalise out the state transitions or expected reward:

p(s ′ | s, a) =
∑
r

p(s ′, r | s, a) E [R | s, a] =
∑
r

r
∑
s′

p(r , s ′ | s, a) .

Markov Decision Process: Alternative Definition

Definition (Markov Decision Process)

A Markov Decision Process is a tuple (S,A, p, r ,γ), where

I S is the set of all possible states

I A is the set of all possible actions (e.g., motor controls)

I p(s ′ | s, a) is the probability of transitioning to s ′, given a state s and action a

I r : S ×A → R is the excepted reward, achieved on a transition starting in (s, a)

r = E [R | s, a]

I γ ∈ [0, 1] is a discount factor that trades off later rewards to earlier ones

Note: These are equivalent formulations: no additional assumptions w.r.t the previous def.

Markov Property: The future is independent of the past given the present

Definition (Markov Property)

Consider a sequence of random variables, {St}t∈N, indexed by time. A state s has the
Markov property when for states ∀s ′ ∈ S

p
(
St+1 = s ′ | St = s

)
= p

(
St+1 = s ′ | ht−1, St = s

)
for all possible histories ht−1 = {S1, . . . ,St−1,A1, . . . ,At−1,R1, . . . ,Rt−1}

In a Markov Decision Process all states are assumed to have the Markov property.

I The state captures all relevant information from the history.

I Once the state is known, the history may be thrown away.

I The state is a sufficient statistic of the past.

Markov Property in a MDP: Test your understanding

In a Markov Decision Process all states are assumed to have the Markov property.

Q: In an MDP this property implies: (Which of the following statements are true?)

p
(
St+1 = s ′ | St = s,At = a

)
= p

(
St+1 = s ′ | S1, . . . ,St−1,A1, . . . ,At , St = s

)
(1)

p
(
St+1 = s ′ | St = s,At = a

)
= p

(
St+1 = s ′ | S1, . . . ,St−1, St = s,At = a

)
(2)

p
(
St+1 = s ′ | St = s,At = a

)
= p

(
St+1 = s ′ | S1, . . . ,St−1, St = s

)
(3)

p
(
Rt+1 = r , St+1 = s ′ | St = s

)
= p

(
Rt+1 = r , St+1 = s ′ | S1, . . . ,St−1,St = s

)
(4)

Example: cleaning robot

I Consider a robot that cleans soda cans

I Two states: high battery charge or low battery charge

I Actions: {wait, search} in high, {wait, search, recharge} in low
I Dynamics may be stochastic

I p(St+1 = high | St = high,At = search) = α
I p(St+1 = low | St = high,At = search) = 1− α

I Reward could be expected number of collected cans (deterministic), or actual
number of collected cans (stochastic)

Reference: Sutton and Barto, Chapter 3, pg 52-53.

Example: robot MDP

Example: robot MDP

Formalising the objective

Returns

I Acting in a MDP results in immediate rewards Rt , which leads to returns Gt :
I Undiscounted return (episodic/finite horizon pb.)

Gt = Rt+1 + Rt+2 + ...+ RT =
T−t−1∑
k=0

Rt+k+1

I Discounted return (finite or infinite horizon pb.)

Gt = Rt+1 + γRt+2 + ...+ γT−tRT =
T−t−1∑
k=0

γkRt+k+1

I Average return (continuing, infinite horizon pb.)

Gt =
1

T − t − 1
(Rt+1 + Rt+2 + ...+ RT) =

1

T − t − 1

T−t−1∑
k=0

Rt+k+1

Note: These are random variables that depends on MDP and policy

Discounted Return

I Discounted returns Gt for infinite horizon T →∞:

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1

I The discount γ ∈ [0, 1] is the present value of future rewards
I The marginal value of receiving reward R after k + 1 time-steps is γkR
I For γ < 1, immediate rewards are more important than delayed rewards
I γ close to 0 leads to ”myopic” evaluation
I γ close to 1 leads to ”far-sighted” evaluation

Why discount?

Most Markov decision processes are discounted. Why?

I Problem specification:
I Immediate rewards may actually be more valuable (e.g., consider earning interest)
I Animal/human behaviour shows preference for immediate reward

I Solution side:
I Mathematically convenient to discount rewards
I Avoids infinite returns in cyclic Markov processes

I The way to think about it: reward and discount together determine the goal

Policies

Goal of an RL agent

To find a behaviour policy that maximises the (expected) return Gt

I A policy is a mapping π : S ×A → [0, 1] that, for every state s assigns for each
action a ∈ A the probability of taking that action in state s. Denoted by π(a|s).

I For deterministic policies, we sometimes use the notation at = π(st) to denote the
action taken by the policy.

Value Functions

I The value function v(s) gives the long-term value of state s

vπ(s) = E [Gt | St = s, π]

I We can define (state-)action values:

qπ(s, a) = E [Gt | St = s,At = a, π]

I (Connection between them) Note that:

vπ(s) =
∑
a

π(a | s)qπ(s, a) = E [qπ(St ,At) | St = s, π] , ∀s

Optimal Value Function

Definition (Optimal value functions)

The optimal state-value function v∗(s) is the maximum value function over all policies

v∗(s) = max
π

vπ(s)

The optimal action-value function q∗(s, a) is the maximum action-value function over
all policies

q∗(s, a) = max
π

qπ(s, a)

I The optimal value function specifies the best possible performance in the MDP

I An MDP is “solved” when we know the optimal value function

Optimal Policy

Define a partial ordering over policies

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) , ∀s

Theorem (Optimal Policies)

For any Markov decision process

I There exists an optimal policy π∗ that is better than or equal to all other policies,
π∗ ≥ π,∀π
(There can be more than one such optimal policy.)

I All optimal policies achieve the optimal value function, vπ
∗
(s) = v∗(s)

I All optimal policies achieve the optimal action-value function, qπ
∗
(s, a) = q∗(s, a)

Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s, a),

π∗(s, a) =

{
1 if a = argmax

a∈A
q∗(s, a)

0 otherwise

Observations:

I There is always a deterministic optimal policy for any MDP

I If we know q∗(s, a), we immediately have the optimal policy

I There can be multiple optimal policies

I If multiple actions maximize q∗(s, ·), we can also just pick any of these
(including stochastically)

Bellman Equations

Value Function

I The value function v(s) gives the long-term value of state s

vπ(s) = E [Gt | St = s, π]

I It can be defined recursively:

vπ(s) = E [Rt+1 + γGt+1 | St = s, π]

= E [Rt+1 + γvπ(St+1) | St = s,At ∼ π(St)]

=
∑
a

π(a | s)
∑
r

∑
s′

p(r , s ′ | s, a)
(
r + γvπ(s ′)

)
I The final step writes out the expectation explicitly

Action values

I We can define state-action values

qπ(s, a) = E [Gt | St = s,At = a, π]

I This implies

qπ(s, a) = E [Rt+1 + γvπ(St+1) | St = s,At = a]

= E [Rt+1 + γqπ(St+1,At+1) | St = s,At = a]

=
∑
r

∑
s′

p(r , s ′ | s, a)

(
r + γ

∑
a′

π(a′ | s ′)qπ(s ′, a′)

)

I Note that

vπ(s) =
∑
a

π(a | s)qπ(s, a) = E [qπ(St ,At) | St = s, π] , ∀s

Bellman Equations

Theorem (Bellman Expectation Equations)

Given an MDP,M = 〈S,A, p, r , γ〉, for any policy π, the value functions obey the
following expectation equations:

vπ(s) =
∑
a

π(s, a)

[
r(s, a) + γ

∑
s′

p(s ′|a, s)vπ(s ′)

]
(5)

qπ(s, a) = r(s, a) + γ
∑
s′

p(s ′|a, s)
∑
a′∈A

π(a′|s ′)qπ(s ′, a′) (6)

The Bellman Optimality Equations

Theorem (Bellman Optimality Equations)

Given an MDP,M = 〈S,A, p, r , γ〉, the optimal value functions obey the following
expectation equations:

v∗(s) = max
a

[
r(s, a) + γ

∑
s′

p(s ′|a, s)v∗(s ′)

]
(7)

q∗(s, a) = r(s, a) + γ
∑
s′

p(s ′|a, s) max
a′∈A

q∗(s ′, a′) (8)

There can be no policy with a higher value than v∗(s) = maxπ vπ(s), ∀s

Some intuition

(Reminder) Greedy on v∗ = Optimal Policy

I An optimal policy can be found by maximising over q∗(s, a),

π∗(s, a) =

{
1 if a = argmax

a∈A
q∗(s, a)

0 otherwise

I Apply the Bellman Expectation Eq. (6):

qπ∗(s, a) = r(s, a) + γ
∑
s′

p(s ′|a, s)
∑
a′∈A

π∗(a′|s ′)qπ∗(s ′, a′)︸ ︷︷ ︸
maxa′q

∗(s′,a′)

= r(s, a) + γ
∑
s′

p(s ′|a, s) max
a′∈A

q∗(s ′, a′)

Solving RL problems using the Bellman Equations

Problems in RL

I Pb1: Estimating vπ or qπ is called policy evaluation or, simply, prediction
I Given a policy, what is my expected return under that behaviour?
I Given this treatment protocol/trading strategy, what is my expected return?

I Pb2 : Estimating v∗ or q∗ is sometimes called control, because these can be used
for policy optimisation
I What is the optimal way of behaving? What is the optimal value function?
I What is the optimal treatment? What is the optimal control policy to minimise

time, fuel consumption, etc?

Exercise:

I Consider the following MDP:

I The actions have a 0.9 probability of success and with 0.1 probably we remain in the
same state

I Rt = 0 for all transitions that end up in S0, and Rt = −1 for all other transitions

Exercise: (pause to work this out)
I Consider the following MDP:

I The actions have a 0.9 probability of success and with 0.1 probably we remain in the
same state

I Rt = 0 for all transitions that end up in S0, and Rt = −1 for all other transitions

I Q: Evaluation problems (Consider a discount γ = 0.9)
I What is vπ for π(s) = a1(→),∀s?
I What is vπ for the uniformly random policy?
I Same policy evaluation problems for γ = 0.0? (What do you notice?)

A solution

Bellman Equation in Matrix Form

I The Bellman value equation, for given π, can be expressed using matrices,

v = rπ + γPπv

where

vi = v(si)

rπi = E [Rt+1 | St = si ,At ∼ π(St)]

Pπij = p(sj | si) =
∑
a

π(a | si)p(sj | si , a)

Bellman Equation in Matrix Form

I The Bellman equation, for a given policy π, can be expressed using matrices,

v = rπ + γPπv

I This is a linear equation that can be solved directly:

v = rπ + γPπv

(I− γPπ) v = rπ

v = (I− γPπ)−1 rπ

I Computational complexity is O(|S|3) — only possible for small problems
I There are iterative methods for larger problems

I Dynamic programming
I Monte-Carlo evaluation
I Temporal-Difference learning

Solving the Bellman Optimality Equation

I The Bellman optimality equation is non-linear

I Cannot use the same direct matrix solution as for policy optimisation (in general)

I Many iterative solution methods:
I Using models / dynamic programming

I Value iteration
I Policy iteration

I Using samples
I Monte Carlo
I Q-learning
I Sarsa

Dynamic Programming

Dynamic Programming

The 1950s were not good years for mathematical research. I felt I had to shield
the Air Force from the fact that I was really doing mathematics. What title,
what name, could I choose? I was interested in planning, in decision making,
in thinking. But planning is not a good word for various reasons. I decided
to use the word ‘programming.’ I wanted to get across the idea that this was
dynamic, this was time-varying—I thought, let’s kill two birds with one stone.
Let’s take a word that has a precise meaning, namely dynamic, in the classical
physical sense. It also is impossible to use the word, dynamic, in a pejorative
sense. Try thinking of some combination that will possibly give it a pejorative
meaning. It’s impossible. Thus, I thought dynamic programming was a good
name. It was something not even a Congressman could object to. So I used it
as an umbrella for my activities.

– Richard Bellman
(slightly paraphrased for conciseness)

Dynamic programming

Dynamic programming refers to a collection of algorithms that can be used
to compute optimal policies given a perfect model of the environment as a
Markov decision process (MDP).

Sutton & Barto 2018

I We will discuss several dynamic programming methods to solve MDPs

I All such methods consist of two important parts:

policy evaluation and policy improvement

Policy evaluation

I We start by discussing how to estimate

vπ(s) = E [Rt+1 + γvπ(St+1) | s, π]

I Idea: turn this equality into an update

Algorithm

I First, initialise v0, e.g., to zero
I Then, iterate

∀s : vk+1(s)← E [Rt+1 + γvk(St+1) | s, π]

I Stopping: whenever vk+1(s) = vk(s), for all s, we must have found vπ

I Q: Does this algorithm always converge?
Answer : Yes, under appropriate conditions (e.g., γ < 1). More next lecture!

Example: Policy evaluation

Policy evaluation

Policy evaluation

Policy evaluation + Greedy Improvement

Policy evaluation + Greedy Improvement

Policy Improvement

I The example already shows we can use evaluation to then improve our policy

I In fact, just being greedy with respect to the values of the random policy sufficed!
(That is not true in general)

Algorithm

Iterate, using

∀s : πnew(s) = argmax
a

qπ(s, a)

= argmax
a

E [Rt+1 + γvπ(St+1) | St = s,At = a]

Then, evaluate πnew and repeat

I Claim: One can show that vπnew(s) ≥ vπ(s), for all s

Policy Improvement: qπnew(s, a) ≥ qπ(s, a)

Policy Iteration

Policy evaluation Estimate vπ

Policy improvement Generate π′ ≥ π

Example: Jack’s Car Rental

I States: Two locations, maximum of 20 cars at each

I Actions: Move up to 5 cars overnight (-$2 each)

I Reward: $10 for each available car rented, γ = 0.9
I Transitions: Cars returned and requested randomly

I Poisson distribution, n returns/requests with prob λn

n! e
−λ

I 1st location: average requests = 3, average returns = 3
I 2nd location: average requests = 4, average returns = 2

Example: Jack’s Car Rental – Policy Iteration

Policy Iteration

I Does policy evaluation need to converge to vπ?

I Or should we stop when we are ‘close’?
(E.g., with a threshold on the change to the values)
I Or simply stop after k iterations of iterative policy evaluation?
I In the small gridworld k = 3 was sufficient to achieve optimal policy

I Extreme: Why not update policy every iteration — i.e. stop after k = 1?
I This is equivalent to value iteration

Value Iteration

I We could take the Bellman optimality equation, and turn that into an update

∀s : vk+1(s)← max
a

E [Rt+1 + γvk(St+1) | St = s,At = s]

I This is equivalent to policy iteration, with k = 1 step of policy evaluation between
each two (greedy) policy improvement steps

Algorithm: Value Iteration

I Initialise v0
I Update:vk+1(s)← maxa E [Rt+1 + γvk(St+1) | St = s,At = s]

I Stopping: whenever vk+1(s) = vk(s), for all s, we must have found v∗

Example: Shortest Path

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-1

-2

-2

-1

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

0

-1

-2

-3

-1

-2

-3

-3

-2

-3

-3

-3

-3

-3

-3

-3

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-4

-3

-4

-4

-4

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-5

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-6

g

Problem V1 V2 V3

V4 V5 V6 V7

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm

Prediction Bellman Expectation Equation
Iterative

Policy Evaluation

Control
Bellman Expectation Equation

Policy Iteration
+ (Greedy) Policy Improvement

Control Bellman Optimality Equation Value Iteration

Observations:

I Algorithms are based on state-value function vπ(s) or v∗(s) ⇒ complexity
O(|A||S|2) per iteration, for |A| actions and |S| states

I Could also apply to action-value function qπ(s, a) or q∗(s, a)⇒ complexity
O(|A|2|S|2) per iteration

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

I DP methods described so far used synchronous updates (all states in parallel)

I Asynchronous DP
I backs up states individually, in any order
I can significantly reduce computation
I guaranteed to converge if all states continue to be selected

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

I In-place dynamic programming

I Prioritised sweeping

I Real-time dynamic programming

In-Place Dynamic Programming

I Synchronous value iteration stores two copies of value function

for all s in S : vnew(s)← max
a

E [Rt+1 + γvold(St+1) | St = s]

vold ← vnew

I In-place value iteration only stores one copy of value function

for all s in S : v(s)← max
a

E [Rt+1 + γv(St+1) | St = s]

Prioritised Sweeping

I Use magnitude of Bellman error to guide state selection, e.g.∣∣∣∣∣max
a

E [Rt+1 + γv(St+1) | St = s]− v(s)

∣∣∣∣∣
I Backup the state with the largest remaining Bellman error

I Update Bellman error of affected states after each backup

I Requires knowledge of reverse dynamics (predecessor states)

I Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

I Idea: only update states that are relevant to agent

I E.g., if the agent is in state St , update that state value, or states that it expects
to be in soon

Full-Width Backups

I Standard DP uses full-width backups
I For each backup (sync or async)

I Every successor state and action is considered
I Using true model of transitions and reward function

I DP is effective for medium-sized problems (millions of
states)

I For large problems DP suffers from curse of dimensionality
I Number of states n = |S| grows exponentially with number

of state variables

I Even one full backup can be too expensive

s

a

Vk+1(s)

s'

r

Vk(s')

Sample Backups

I In subsequent lectures we will consider sample backups

I Using sample rewards and sample transitions 〈s, a, r , s ′〉
(Instead of reward function r and transition dynamics p)

I Advantages:
I Model-free: no advance knowledge of MDP required
I Breaks the curse of dimensionality through sampling
I Cost of backup is constant, independent of n = |S|

s

a

Vk+1(s)

s'

r

Summary

What have we covered today?

I Markov Decision Processes

I Objectives in an MDP: different notion of return

I Value functions - expected returns, condition on state (and action)

I Optimality principles in MDPs: optimal value functions and optimal policies

I Bellman Equations

I Two class of problems in RL: evaluation and control

I How to compute vπ (aka solve an evaluation/prediction problem)
I How to compute the optimal value function via dynamic programming:

I Policy Iteration
I Value Iteration

Questions?

The only stupid question is the one you were afraid to ask but never did.
-Rich Sutton

For questions that may arise during this lecture please use Moodle and/or the next
Q&A session.

