Lecture 3:
Markov Decision Processes and Dynamic Programming

Diana Borsa

January 15, 2021

O

Background

Sutton & Barto 2018, Chapter 3 + 4

O

Recap

environment

agent suon

N

ose!
w /_
k

» Reinforcement learning is the science of learning to make decisions

» Agents can learn a policy, value function and/or a model

» The general problem involves taking into account time and consequences

» Decisions affect the reward, the agent state, and environment state

O

This Lecture

P Last lecture: multiple actions, but only one state—no model
» This lecture:

» Formalise the problem with full sequential structure
» Discuss first class of solution methods which assume true model is given
» These methods are called dynamic programming

» Next lectures: use similar ideas, but use sampling instead of true model

O

Formalising the RL interaction

(o)

Formalising the RL interface

environment

agent o Jakot

\ol=)
w/
k

» We will discuss a mathematical formulation of the agent-environment interaction
» This is called a Markov Decision Process (MDP)

» Enables us to talk clearly about the objective and how to achieve it

O

MDPs: A simplifying assumption

» For now, assume the environment is fully observable:
= the current observation contains all relevant information

> Note: Almost all RL problems can be formalised as MDPs, e.g.,
» Optimal control primarily deals with continuous MDPs
» Partially observable problems can be converted into MDPs
» Bandits are MDPs with one state

O

Markov Decision Process

Definition (Markov Decision Process - Sutton & Barto 2018)

A Markov Decision Process is a tuple (S, A, p,~), where
> S is the set of all possible states
> A is the set of all possible actions (e.g., motor controls)

» p(r,s’ | s,a)is the joint probability of a reward r and next state s’, given a state s
and action a

» ~ € [0,1] is a discount factor that trades off later rewards to earlier ones

Observations:
» p defines the dynamics of the problem

» Sometimes it is useful to marginalise out the state transitions or expected reward:

p(s’ | s,a) = Zps r|s,a) E[R[s,a]:Zer(r,s’\s,a).
oy @

Markov Decision Process: Alternative Definition

Definition (Markov Decision Process)

A Markov Decision Process is a tuple (S, A, p, r,7y), where
> S is the set of all possible states
» A is the set of all possible actions (e.g., motor controls)
» p(s’ | s, a) is the probability of transitioning to s’, given a state s and action a

» r:S x A— Ris the excepted reward, achieved on a transition starting in (s, a)

r=E[R|s,a]

» ~ € [0,1] is a discount factor that trades off later rewards to earlier ones

Note: These are equivalent formulations: no additional assumptions w.r.t the previous def.

O

Markov Property: The future is independent of the past given the present

Definition (Markov Property)
Consider a sequence of random variables, {S;};cn, indexed by time. A state s has the
Markov property when for states Vs’ € S

P (5t+1 =4 \ St = 5) =p (5t+1 =5 | ht—1,5: = 5)

for all possible histories hy—1 = {S1,...,S5t-1,A1,.. ., At—1,R1, ..., Re—1}

In a Markov Decision Process all states are assumed to have the Markov property.
» The state captures all relevant information from the history.
» Once the state is known, the history may be thrown away.

» The state is a sufficient statistic of the past.

O

Markov Property in a MDP: Test your understanding

In a Markov Decision Process all states are assumed to have the Markov property.

Q: In an MDP this property implies: (Which of the following statements are true?)

P(5t+1=5/ | St:57At:a) :P(St—H =5 | 517---,5t—1,A1,~~aAt75t:5) (1)
P(5t+1 =4 ’ StZS,Atza) :P(5t+1 = | 517--~75t—1a5t:57At:3) (2)
P(5t+1 =5 ‘ 5t:57At:3) :P(5t+1 =5 ‘ 517"~>St—175t:5) (3)

P(Rt+1:"75t+1:5/ | St:5) :P(Rt+1:”75t+1:5/ | 51,---75t7175t:5) (4)

O

Example: cleaning robot

Consider a robot that cleans soda cans
Two states: high battery charge or low battery charge

Actions: {wait, search} in high, {wait, search, recharge} in low

vvyyy

Dynamics may be stochastic
» p(Sir1 = high | S¢ = high, A; = search) = «
» p(Ser1 =low | S; = high, A; =search) =1 -«

» Reward could be expected number of collected cans (deterministic), or actual
number of collected cans (stochastic)

Reference: Sutton and Barto, Chapter 3, pg 52-53.

O

Example: robot MDP

s a s’ p(s’|s,a) | r(s,a,s’)
high search high (o} T'search
high search low l -« Tsearch
low search high | 1 -7 -3

low search low B T'search
high wait high | 1 Tyait
high wait low 0 Twait
low wait high | O Twait
low wait low 1 Twait
low recharge high 1 0

low recharge low 0 0

O

Example: robot MDP

1, Tvait 1, -3

B » I'search

1, 0 recharge

search

1 I'wait
Oy Tsearch 1-o » T'search ’

O

Formalising the objective

(o)

Returns

» Acting in a MDP results in immediate rewards Ry, which leads to returns G;:
» Undiscounted return (episodic/finite horizon pb.)

T—t—1
Gt=Rit1+ Repo+ ...+ R = Z Retrt1
k=0
» Discounted return (finite or infinite horizon pb.)
T—t-1

Gt = Rep1 +YRes2 + ..+ 'Rr = Z Y Reskt1
k=0

> Average return (continuing, infinite horizon pb.)

T—t—-1

1 1
Rit1+ Riy2 + ...+ R7) = T-or_1 E Retk+1
k=0

Ge=g—11(

Note: These are random variables that depends on MDP and policy @

Discounted Return

» Discounted returns G; for infinite horizon T — oo:
o0
Gt = Rer1 +YRep2 + ... = kaRtJrkﬂ
k=0

» The discount € [0, 1] is the present value of future rewards
> The marginal value of receiving reward R after k + 1 time-steps is Y¥R
» For v < 1, immediate rewards are more important than delayed rewards

» ~ close to 0 leads to "myopic" evaluation
» ~ close to 1 leads to "far-sighted” evaluation

O

Why discount?

Most Markov decision processes are discounted. Why?

» Problem specification:

» Immediate rewards may actually be more valuable (e.g., consider earning interest)
» Animal/human behaviour shows preference for immediate reward

» Solution side:

» Mathematically convenient to discount rewards
P Avoids infinite returns in cyclic Markov processes

> The way to think about it: reward and discount together determine the goal

O

Policies

Goal of an RL agent

To find a behaviour policy that maximises the (expected) return G;

» A policy is a mapping 7 : S x A — [0, 1] that, for every state s assigns for each
action a € A the probability of taking that action in state s. Denoted by 7(a|s).

» For deterministic policies, we sometimes use the notation a; = 7(s;) to denote the
action taken by the policy.

O

Value Functions

» The value function v(s) gives the long-term value of state s
va(s) =E[G; | St = s, 7]
» We can define (state-)action values:
G=(s,a) =E[G; | St = s, A = a, 7]
» (Connection between them) Note that:

ve(s) = Y m(a]| s)gn(s,a) = E[gr(St,Ar) | Se=s,7] , Vs

a

O

Optimal Value Function

Definition (Optimal value functions)

The optimal state-value function v*(s) is the maximum value function over all policies
v*(s) = max vg(s)
™

The optimal action-value function g*(s, a) is the maximum action-value function over
all policies

q*(s,a) = max gx(s, a)

» The optimal value function specifies the best possible performance in the MDP

» An MDP is “solved” when we know the optimal value function

O

Optimal Policy

Define a partial ordering over policies

7>7 = vi(s) > vu(s) , Vs

Theorem (Optimal Policies)
For any Markov decision process
» There exists an optimal policy * that is better than or equal to all other policies,

>,V
(There can be more than one such optimal policy.)

> All optimal policies achieve the optimal value function, v™ (s) = v*(s)
» All optimal policies achieve the optimal action-value function, g™ (s,a) = q*(s, a)

O

Finding an Optimal Policy

An optimal policy can be found by maximising over ¢*(s, a),

acA

“(s.9) 1 if a=argmax g*(s, a)
*(s,a) =
0 otherwise

Observations:
» There is always a deterministic optimal policy for any MDP
» If we know g*(s, a), we immediately have the optimal policy
» There can be multiple optimal policies

» If multiple actions maximize g.(s,-), we can also just pick any of these
(including stochastically)

O

Bellman Equations

(o)

Value Function

» The value function v(s) gives the long-term value of state s
va(s) = E[G; | St = s, 7]
» It can be defined recursively:

Vﬂ-(S) =E [Rt+1 + ’YGt+1 | 51_- == S,7T]
= E[Rey1 + Vv (St41) | St =5, Ar ~ 7(St)]

=> w(al9)> Y p(r,s | s,a)(r+yva(s))

> The final step writes out the expectation explicitly

O

Action values
» We can define state-action values
G=(s,a) =E[G; | 5t = s, A = a, 7]
» This implies

gr(s,a) = E[Rer1 +ve(Set1) | St = s, Ar = 4]
=E [Ret1 +79x(St41,Ary1) | St =5, Ar = 4]

D ILCEIET <r+vZW(a’ | s')qw(s’,a/)>

r s a’

> Note that

ve(s) = Y m(a| s)gn(s,a) = E[ga(Se, Ar) | St =s,7] , Vs

a

O

Bellman Equations

Theorem (Bellman Expectation Equations)

Given an MDP, M = (S, A, p, r,~), for any policy , the value functions obey the
following expectation equations:

va(s) = Z (s,)[58)+72P(5\35V7r()] (5)
(5.9 = rle3) £ 26 9 w(1)an(#o) ©)
aeA

O

The Bellman Optimality Equations

Theorem (Bellman Optimality Equations)

Given an MDP, M = (S, A, p, r,7), the optimal value functions obey the following
expectation equations:

vi(s) = max [r(s, a)+ fyz p(s'|a, s)v*(s/)] (7)

s/

qg*(s,a) = r(s,a)+~ Z p(s'|a, s) max q*(s’,d) (8)

S/

There can be no policy with a higher value than v, (s) = max; vx(s), Vs

O

Some intuition
(Reminder) Greedy on v* = Optimal Policy

» An optimal policy can be found by maximising over g*(s, a),

acA

“(s.2) 1 if a=argmax g*(s,a)
(s, a) =
0 otherwise

» Apply the Bellman Expectation Eq. (6):

gue(s,2) = r(s.2)+7 > p(s'las) O 7]) (5.)

a'eA

max, q*(s’,a’)

= r(s:2) +7)_ p(s|a,s) maxq’(s', o)

5/

O

Solving RL problems using the Bellman Equations

(o)

Problems in RL

» Pbl: Estimating v, or g, is called policy evaluation or, simply, prediction

» Given a policy, what is my expected return under that behaviour?
> Given this treatment protocol/trading strategy, what is my expected return?

> Pb2: Estimating v, or g, is sometimes called control, because these can be used
for policy optimisation
» What is the optimal way of behaving? What is the optimal value function?
» What is the optimal treatment? What is the optimal control policy to minimise
time, fuel consumption, etc?

O

Exercise:

» Consider the following MDP:

aQ, Q

R ey >
Se
q"_ al
» The actions have a 0.9 probability of success and with 0.1 probably we remain in the

same state
» R; = 0 for all transitions that end up in Sg, and R; = —1 for all other transitions

O

Exercise: (pause to work this out)
» Consider the following MDP:

a, Q

Se
a, a,
» The actions have a 0.9 probability of success and with 0.1 probably we remain in the
same state

» R; = 0 for all transitions that end up in Sq, and R; = —1 for all other transitions

» Q: Evaluation problems (Consider a discount v = 0.9)
> What is v, for m(s) = a;(—),Vs?

» What is v, for the uniformly random policy?
» Same policy evaluation problems for v = 0.07 (What do you notice?) @

A solution

O

Bellman Equation in Matrix Form

» The Bellman value equation, for given m, can be expressed using matrices,

v=r"+~yP"v
where

vi = v(si)

rm =E[Rey1 | St = si, At ~ 7(5t)]
PE=p(si | s)=>_ m(a|s)p(si | si,a)

a

O

Bellman Equation in Matrix Form
» The Bellman equation, for a given policy m, can be expressed using matrices,
v=r"+~yP"v
P> This is a linear equation that can be solved directly:

v=r"+~P"v
(I —~P")v=r"
v=(1—~P™) ¢

» Computational complexity is O(|S|3) — only possible for small problems
» There are iterative methods for larger problems
» Dynamic programming

» Monte-Carlo evaluation
» Temporal-Difference learning b"

Solving the Bellman Optimality Equation

» The Bellman optimality equation is non-linear

» Cannot use the same direct matrix solution as for policy optimisation (in general)

> Many iterative solution methods:

» Using models / dynamic programming
> Value iteration
» Policy iteration

» Using samples
» Monte Carlo
> Q-learning
> Sarsa

O

Dynamic Programming

(o)

Dynamic Programming

The 1950s were not good years for mathematical research. | felt | had to shield
the Air Force from the fact that | was really doing mathematics. What title,
what name, could | choose? | was interested in planning, in decision making,
in thinking. But planning is not a good word for various reasons. | decided
to use the word ‘programming.’ | wanted to get across the idea that this was
dynamic, this was time-varying—I thought, let’s kill two birds with one stone.
Let's take a word that has a precise meaning, namely dynamic, in the classical
physical sense. It also is impossible to use the word, dynamic, in a pejorative
sense. Try thinking of some combination that will possibly give it a pejorative
meaning. It's impossible. Thus, | thought dynamic programming was a good
name. It was something not even a Congressman could object to. So I used it
as an umbrella for my activities.

— Richard Bellman
(slightly paraphrased for conciseness) @

Dynamic programming

Dynamic programming refers to a collection of algorithms that can be used
to compute optimal policies given a perfect model of the environment as a

Markov decision process (MDP).
Sutton & Barto 2018

> We will discuss several dynamic programming methods to solve MDPs

» All such methods consist of two important parts:

policy evaluation and policy improvement

O

Policy evaluation

> We start by discussing how to estimate
Vﬂ'(s) =E [Rt+1 + 7V7r(5t+1) | 577T]

» |dea: turn this equality into an update

Algorithm

» First, initialise vy, e.g., to zero
» Then, iterate
Vs vkr1(s) < E[Rer1 + yvk(Sts1) | s, 7]

> Stopping: whenever vi1(s) = vk(s), for all s, we must have found v,

» Q: Does this algorithm always converge?
Answer: Yes, under appropriate conditions (e.g., 7 < 1). More next lecture!

O

Example: Policy evaluation

actions

1 2 3
4 5 6 7
8 9 10 [
12 13 [14

R; = -1

on all transitions

O

Policy evaluation

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-1.7

0.0

(o)

Policy evaluation

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

2.4

-3.0

-2.9

-2.4

0.0

0.0

-6.1

-8.4

-9.0

-6.1

-7.7

-8.4

-8.4

-8.4

-8.4

-7.7

-6.1

-9.0

-8.4

-6.1

0.0

|-22.

.|-20.

J-14.

1 0.0

O

Policy evaluation + Greedy Improvement

0.0/ 0.0] 0.0/ 0.0 N
0.0/ 0.0] 0.0] 0.0 PN

0.0/ 0.0] 0.0/ 0.0 sl le

0.0/ 0.0 0.0] 0.0 s o e
0.0[-1.0|-1.0/-1.0 bl
-1.0[-1.0/-1.0/-1.0 bl
-1.0|-1.0{-1.0/-1.0 olbl|
-1.0/-1.0{-1.0| 0.0 b —
0.0[-1.7|-2.0/-2.0 — [
-1.7|-2.0|-2.0|-2.0 Hid b,
-2.0/-2.0[-2.0/-1.7 Hib| o
-2.0[-2.0|-1.7| 0.0 | - -

random
palicy

O

Policy evaluation + Greedy Improvement

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

—

-2.9

-3.0

-2.9

-2.4

—

-3.0

-2.9

2.4

0.0

GE

R

0.0

-6.1

-8.4

-9.0

-6.1

-1.7

-8.4

-8.4

—

-8.4

-8.4

-1.7

-6.1

—

-9.0

-8.4

-6.1

0.0

NG

1.1._11

-14.

.|-22.

-18.

.|-20.

-

.|-20.

.|-14.

—

.|-20.

-1 0.0

G

hET

optimal
policy

O

Policy Improvement

» The example already shows we can use evaluation to then improve our policy

> In fact, just being greedy with respect to the values of the random policy sufficed!
(That is not true in general)

Algorithm

Iterate, using
Vs Tnew(s) = argmax gx(s, a)
a

= argmax E [Re11 + Y (St41) | St = s, Ar = 4]
a

Then, evaluate mhew and repeat

» Claim: One can show that vy, (s) > vz(s), for all s 0

Policy Improvement: g, _.(s,a) > g.(s, a)

(o)

Policy lteration

starting
V=r

Policy evaluation Estimate v™

Policy improvement Generate n/ > 7

JT

evaluation

m

V
si—>greedy(V)
improvement

el V4 *
e | g

Example: Jack’s Car Rental

> States: Two locations, maximum of 20 cars at each
» Actions: Move up to 5 cars overnight (-$2 each)
» Reward: $10 for each available car rented, v = 0.9

» Transitions: Cars returned and requested randomly

> Poisson distribution, n returns/requests with prob i‘,—:e_
> 1st location: average requests = 3, average returns = 3
» 2nd location: average requests = 4, average returns = 2

A

O

Example: Jack’'s Car Rental — Policy lteration

T

20

#Cars at first location

=]

0 #Cars at second location

Policy lteration

» Does policy evaluation need to converge to v™?

» Or should we stop when we are ‘close’?
(E.g., with a threshold on the change to the values)

» Or simply stop after k iterations of iterative policy evaluation?
» In the small gridworld k = 3 was sufficient to achieve optimal policy

> Extreme: Why not update policy every iteration — i.e. stop after k = 17
» This is equivalent to value iteration

O

Value lteration

> We could take the Bellman optimality equation, and turn that into an update

Vs veyi(s) < maaxE [Rex1 + Yvk(St+1) | St =5, At = 5]

» This is equivalent to policy iteration, with kK = 1 step of policy evaluation between
each two (greedy) policy improvement steps

Algorithm: Value lteration

» Initialise vp
» Update:vg11(s) < maxa E[Ret1 + Yvk(Se+1) | St = s, At = 9]

> Stopping: whenever vi1(s) = vk(s), for all s, we must have found v*

O

Example: Shortest Path

. . 0 0 0 . -1 -1 -1 . -1 _2 -2
oo | o] o A A 4] 2] 2|2
oo | o] o Al] A 2| 2| 2|-=2
oo | o] o A | A 2| 2| -2]|-=2
Problem A Vs Vg
. " 2 ° . " ? ° . " 2 N . " ? °
4|2 | 3|3 4] 2| 3| -4 A4 | 2| 3| -4 4] 2| 3| -4
2| 3| 3|3 2| 3| -4|-4 2| 3|45 2| 3|45
3| -3|3]|-=3 3| 4|4 -4 3| -4]|5 |5 3| -4|-5|-6
Vy Vg Ve O

(o)

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm

Iterative

Prediction | Bellman Expectation Equation . .
P 4 Policy Evaluation

Bellman Expectation Equation

Control .
ontro + (Greedy) Policy Improvement

Policy Iteration

Control Bellman Optimality Equation Value lteration

Observations:

» Algorithms are based on state-value function v,(s) or v*(s) = complexity
O(|A||S|?) per iteration, for |A| actions and |S| states

» Could also apply to action-value function g (s, a) or g*(s,a) = complexity

O(|AJ%|S|?) per iteration @

Extensions to Dynamic Programming

(o)

Asynchronous Dynamic Programming

» DP methods described so far used synchronous updates (all states in parallel)

» Asynchronous DP
» backs up states individually, in any order
» can significantly reduce computation
» guaranteed to converge if all states continue to be selected

O

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

» In-place dynamic programming
» Prioritised sweeping

» Real-time dynamic programming

O

In-Place Dynamic Programming

» Synchronous value iteration stores two copies of value function

forall sin S Vhew(s) < maxE [Reyr1 + Yoid(Se+1) | St = s]
a

Vold €= Vnew
» In-place value iteration only stores one copy of value function

forall sin S: v(s) < maxE [Ret1 + yv(Se+1) | St = s]
a

O

Prioritised Sweeping

» Use magnitude of Bellman error to guide state selection, e.g.
max [[Res1 +yv(Se41) | St =s] — v(s)

Backup the state with the largest remaining Bellman error
Update Bellman error of affected states after each backup
Requires knowledge of reverse dynamics (predecessor states)

Can be implemented efficiently by maintaining a priority queue

O

Real-Time Dynamic Programming

P Idea: only update states that are relevant to agent

> E.g., if the agent is in state S;, update that state value, or states that it expects
to be in soon

O

Full-Width Backups

» Standard DP uses full-width backups

» For each backup (sync or async)
» Every successor state and action is considered
» Using true model of transitions and reward function

» DP is effective for medium-sized problems (millions of

states)

» For large problems DP suffers from curse of dimensionality

» Number of states n = |S| grows exponentially with number
of state variables

» Even one full backup can be too expensive

O

Sample Backups

» In subsequent lectures we will consider sample backups
» Using sample rewards and sample transitions (s, a, r,s’)

(Instead of reward function r and transition dynamics p)
» Advantages:

» Model-free: no advance knowledge of MDP required
» Breaks the curse of dimensionality through sampling
» Cost of backup is constant, independent of n = |S|

O

Summary

(o)

What have we covered today?

vVvvyVvyVvyVvyYyvyy

Markov Decision Processes

Objectives in an MDP: different notion of return

Value functions - expected returns, condition on state (and action)
Optimality principles in MDPs: optimal value functions and optimal policies
Bellman Equations

Two class of problems in RL: evaluation and control

How to compute v, (aka solve an evaluation/prediction problem)

How to compute the optimal value function via dynamic programming:

» Policy Iteration
» Value lteration

O

Questions?

The only stupid question is the one you were afraid to ask but never did.
-Rich Sutton

For questions that may arise during this lecture please use Moodle and/or the next
Q&A session.

O

