Lecture 3: Markov Decision Processes and Dynamic Programming

Diana Borsa

January 15, 2021

Sutton & Barto 2018, Chapter 3 + 4

Recap

- Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- The general problem involves taking into account time and consequences
- Decisions affect the reward, the agent state, and environment state

This Lecture

- Last lecture: multiple actions, but only one state—no model
- This lecture:
 - Formalise the problem with full sequential structure
 - Discuss first class of solution methods which assume true model is given
 - These methods are called dynamic programming
- ▶ Next lectures: use similar ideas, but use sampling instead of true model

Formalising the RL interaction

Formalising the RL interface

▶ We will discuss a mathematical formulation of the agent-environment interaction

- This is called a Markov Decision Process (MDP)
- Enables us to talk clearly about the objective and how to achieve it

MDPs: A simplifying assumption

► For now, assume the environment is fully observable: ⇒ the current observation contains all relevant information

▶ Note: Almost all RL problems can be formalised as MDPs, e.g.,

- Optimal control primarily deals with continuous MDPs
- Partially observable problems can be converted into MDPs
- Bandits are MDPs with one state

Markov Decision Process

Definition (Markov Decision Process - Sutton & Barto 2018)

A Markov Decision Process is a tuple ($\mathcal{S}, \mathcal{A}, p, \gamma$), where

- \mathcal{S} is the set of all possible states
- \mathcal{A} is the set of all possible actions (e.g., motor controls)
- p(r, s' | s, a) is the joint probability of a reward r and next state s', given a state s and action a
- $\blacktriangleright~\gamma \in [0,1]$ is a discount factor that trades off later rewards to earlier ones

Observations:

- *p* defines the dynamics of the problem
- Sometimes it is useful to marginalise out the state transitions or expected reward:

$$p(s' \mid s, a) = \sum_{r} p(s', r \mid s, a)$$
 $\mathbb{E}[R \mid s, a] = \sum_{r} r \sum_{s'} p(r, s' \mid s, a).$

Markov Decision Process: Alternative Definition

Definition (Markov Decision Process)

A Markov Decision Process is a tuple (S, A, p, r, γ) , where

- S is the set of all possible states
- \mathcal{A} is the set of all possible actions (e.g., motor controls)
- \triangleright $p(s' \mid s, a)$ is the probability of transitioning to s', given a state s and action a
- ▶ $r: S \times A \rightarrow \mathbb{R}$ is the excepted reward, achieved on a transition starting in (s, a)

 $r = \mathbb{E}\left[R \mid s, a\right]$

ightarrow $\gamma \in [0,1]$ is a discount factor that trades off later rewards to earlier ones

Note: These are equivalent formulations: no additional assumptions w.r.t the previous def.

Markov Property: The future is independent of the past given the present

Definition (Markov Property)

Consider a sequence of random variables, $\{S_t\}_{t\in\mathbb{N}}$, indexed by time. A state s has the Markov property when for states $\forall s' \in S$

$$p(S_{t+1} = s' | S_t = s) = p(S_{t+1} = s' | h_{t-1}, S_t = s)$$

for all possible histories
$$h_{t-1} = \{S_1, \ldots, S_{t-1}, A_1, \ldots, A_{t-1}, R_1, \ldots, R_{t-1}\}$$

In a Markov Decision Process all states are assumed to have the Markov property.

- The state captures all relevant information from the history.
- Once the state is known, the history may be thrown away.
- The state is a sufficient statistic of the past.

Markov Property in a MDP: Test your understanding

In a Markov Decision Process all states are assumed to have the Markov property.

Q: In an MDP this property implies: (Which of the following statements are true?)

$$p(S_{t+1} = s' | S_t = s, A_t = a) = p(S_{t+1} = s' | S_1, \dots, S_{t-1}, A_1, \dots, A_t, S_t = s)$$
(1)

$$p(S_{t+1} = s' \mid S_t = s, A_t = a) = p(S_{t+1} = s' \mid S_1, \dots, S_{t-1}, S_t = s, A_t = a)$$
(2)

$$p(S_{t+1} = s' | S_t = s, A_t = a) = p(S_{t+1} = s' | S_1, \dots, S_{t-1}, S_t = s)$$
(3)

$$p(R_{t+1} = r, S_{t+1} = s' | S_t = s) = p(R_{t+1} = r, S_{t+1} = s' | S_1, \dots, S_{t-1}, S_t = s)$$
(4)

Example: cleaning robot

- Consider a robot that cleans soda cans
- Two states: high battery charge or low battery charge
- Actions: {wait, search} in high, {wait, search, recharge} in low
- Dynamics may be stochastic
 - $f(S_{t+1} = \mathsf{high} \mid S_t = \mathsf{high}, A_t = \mathsf{search}) = \alpha$
 - ▶ $p(S_{t+1} = \text{low} | S_t = \text{high}, A_t = \text{search}) = 1 \alpha$
- Reward could be expected number of collected cans (deterministic), or actual number of collected cans (stochastic)

Reference: Sutton and Barto, Chapter 3, pg 52-53.

Example: robot MDP

s	a	s'	$\mid p(s' s, a)$	$r(s,a,s^{\prime})$
high	search	high	α	$r_{\texttt{search}}$
high	search	low	1-lpha	$r_{\texttt{search}}$
low	search	high	1-eta	-3
low	search	low	β	$r_{\texttt{search}}$
high	wait	high	1	r_{wait}
high	wait	low	0	$r_{\tt wait}$
low	wait	high	0	r_{wait}
low	wait	low	1	r_{wait}
low	recharge	high	1	0
low	recharge	low	0	0

Example: robot MDP

6

Formalising the objective

Returns

Acting in a MDP results in immediate rewards R_t, which leads to returns G_t:
 Undiscounted return (episodic/finite horizon pb.)

$$G_t = R_{t+1} + R_{t+2} + \dots + R_T = \sum_{k=0}^{T-t-1} R_{t+k+1}$$

Discounted return (finite or infinite horizon pb.)

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t} R_T = \sum_{k=0}^{T-t-1} \gamma^k R_{t+k+1}$$

Average return (continuing, infinite horizon pb.)

$$G_t = rac{1}{T-t-1} \left(R_{t+1} + R_{t+2} + ... + R_T
ight) = rac{1}{T-t-1} \sum_{k=0}^{T-t-1} R_{t+k+1}$$

Note: These are random variables that depends on MDP and policy

Discounted Return

▶ Discounted returns G_t for infinite horizon $T \to \infty$:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

▶ The discount $\gamma \in [0,1]$ is the present value of future rewards

- The marginal value of receiving reward R after k + 1 time-steps is $\gamma^k R$
- ▶ For $\gamma < 1$, immediate rewards are more important than delayed rewards
- γ close to 0 leads to "myopic" evaluation
- γ close to 1 leads to "far-sighted" evaluation

Why discount?

Most Markov decision processes are discounted. Why?

- Problem specification:
 - Immediate rewards may actually be more valuable (e.g., consider earning interest)
 - Animal/human behaviour shows preference for immediate reward
- Solution side:
 - Mathematically convenient to discount rewards
 - Avoids infinite returns in cyclic Markov processes
- The way to think about it: reward and discount together determine the goal

Goal of an RL agent

To find a behaviour policy that maximises the (expected) return G_t

- A policy is a mapping π : S × A → [0, 1] that, for every state s assigns for each action a ∈ A the probability of taking that action in state s. Denoted by π(a|s).
- For deterministic policies, we sometimes use the notation $a_t = \pi(s_t)$ to denote the action taken by the policy.

Value Functions

• The value function v(s) gives the long-term value of state s

$$v_{\pi}(s) = \mathbb{E}\left[G_t \mid S_t = s, \pi\right]$$

We can define (state-)action values:

$$q_{\pi}(s,a) = \mathbb{E}\left[\mathsf{G}_t \mid \mathsf{S}_t = s, \mathsf{A}_t = a, \pi
ight]$$

Connection between them) Note that:

$$v_{\pi}(s) \;=\; \sum_{a} \pi(a \mid s) q_{\pi}(s, a) \;=\; \mathbb{E}\left[q_{\pi}(S_t, A_t) \mid S_t = s, \pi
ight] \;, \; orall s$$

Optimal Value Function

Definition (Optimal value functions)

The optimal state-value function $v^*(s)$ is the maximum value function over all policies

$$v^*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q^*(s, a)$ is the maximum action-value function over all policies

$$q^*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

The optimal value function specifies the best possible performance in the MDP
An MDP is "solved" when we know the optimal value function

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi' \quad \Longleftrightarrow \quad \textit{v}_{\pi}(s) \geq \textit{v}_{\pi'}(s) \hspace{0.2cm}, \hspace{0.2cm} orall s$$

Theorem (Optimal Policies)

For any Markov decision process

• There exists an optimal policy π^* that is better than or equal to all other policies, $\pi^* \ge \pi, \forall \pi$

(There can be more than one such optimal policy.)

- All optimal policies achieve the optimal value function, $v^{\pi^*}(s) = v^*(s)$
- All optimal policies achieve the optimal action-value function, $q^{\pi^*}(s, a) = q^*(s, a)$

Finding an Optimal Policy

An optimal policy can be found by maximising over $q^*(s, a)$,

$$\pi^*(s,a) = \left\{ egin{array}{cc} 1 & ext{if } a = ext{argmax } q^*(s,a) \ a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

Observations:

- There is always a deterministic optimal policy for any MDP
- lf we know $q^*(s, a)$, we immediately have the optimal policy
- There can be multiple optimal policies
- ► If multiple actions maximize q_{*}(s, ·), we can also just pick any of these (including stochastically)

Bellman Equations

Value Function

• The value function v(s) gives the long-term value of state s

$$v_{\pi}(s) = \mathbb{E}\left[G_t \mid S_t = s, \pi
ight]$$

It can be defined recursively:

$$\begin{aligned} \mathbf{v}_{\pi}(s) &= \mathbb{E}\left[R_{t+1} + \gamma G_{t+1} \mid S_t = s, \pi\right] \\ &= \mathbb{E}\left[R_{t+1} + \gamma \mathbf{v}_{\pi}(S_{t+1}) \mid S_t = s, A_t \sim \pi(S_t)\right] \\ &= \sum_{a} \pi(a \mid s) \sum_{r} \sum_{s'} p(r, s' \mid s, a) \left(r + \gamma \mathbf{v}_{\pi}(s')\right) \end{aligned}$$

The final step writes out the expectation explicitly

Action values

We can define state-action values

$$q_{\pi}(s,a) = \mathbb{E}\left[G_t \mid S_t = s, A_t = a, \pi
ight]$$

► This implies

$$q_{\pi}(s,a) = \mathbb{E} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a \right] \\ = \mathbb{E} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right] \\ = \sum_{r} \sum_{s'} p(r, s' \mid s, a) \left(r + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a') \right)$$

Note that

$$v_{\pi}(s) \;=\; \sum_{a} \pi(a \mid s) q_{\pi}(s, a) \;=\; \mathbb{E}\left[q_{\pi}(S_t, A_t) \mid S_t = s, \pi
ight] \;\;,\; orall s$$

Bellman Equations

Theorem (Bellman Expectation Equations)

Given an MDP, $\mathcal{M} = \langle S, \mathcal{A}, p, r, \gamma \rangle$, for any policy π , the value functions obey the following expectation equations:

$$v_{\pi}(s) = \sum_{a} \pi(s, a) \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) v_{\pi}(s') \right]$$
(5)
$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|a, s) \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$
(6)

The Bellman Optimality Equations

Theorem (Bellman Optimality Equations)

Given an MDP, $\mathcal{M} = \langle S, \mathcal{A}, p, r, \gamma \rangle$, the optimal value functions obey the following expectation equations:

$$v^{*}(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) v^{*}(s') \right]$$
(7)
$$q^{*}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|a, s) \max_{a' \in \mathcal{A}} q^{*}(s', a')$$
(8)

There can be no policy with a higher value than $v_*(s) = \max_{\pi} v_{\pi}(s), \ \forall s$

Some intuition

(Reminder) Greedy on $v^* =$ Optimal Policy

An optimal policy can be found by maximising over $q^*(s, a)$,

$$\pi^*(s,a) = \left\{ egin{array}{cc} 1 & ext{if } a = ext{argmax } q^*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

► Apply the Bellman Expectation Eq. (6):

$$q_{\pi^*}(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|a,s) \underbrace{\sum_{a' \in \mathcal{A}} \pi^*(a'|s') q_{\pi^*}(s',a')}_{\max_{a' \in \mathcal{A}} q^*(s',a')}$$
$$= r(s,a) + \gamma \sum_{s'} p(s'|a,s) \max_{a' \in \mathcal{A}} q^*(s',a')$$

Solving RL problems using the Bellman Equations

Problems in RL

- ▶ *Pb1:* Estimating v_{π} or q_{π} is called policy evaluation or, simply, prediction
 - Given a policy, what is my expected return under that behaviour?
 - Given this treatment protocol/trading strategy, what is my expected return?
- *Pb2*: Estimating v_{*} or q_{*} is sometimes called control, because these can be used for policy optimisation
 - What is the optimal way of behaving? What is the optimal value function?
 - What is the optimal treatment? What is the optimal control policy to minimise time, fuel consumption, etc?

Exercise:

Consider the following MDP:

- The actions have a 0.9 probability of success and with 0.1 probably we remain in the same state
- \triangleright $R_t = 0$ for all transitions that end up in S_0 , and $R_t = -1$ for all other transitions

Exercise: (pause to work this out)

Consider the following MDP:

- The actions have a 0.9 probability of success and with 0.1 probably we remain in the same state
- \triangleright $R_t = 0$ for all transitions that end up in S_0 , and $R_t = -1$ for all other transitions
- **Q:** Evaluation problems (Consider a discount $\gamma = 0.9$)
 - What is v_{π} for $\pi(s) = a_1(\rightarrow), \forall s$?
 - What is v_{π} for the uniformly random policy?
 - Same policy evaluation problems for $\gamma = 0.0$? (What do you notice?)

A solution

Bellman Equation in Matrix Form

> The Bellman value equation, for given π , can be expressed using matrices,

$$\mathbf{v} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}$$

where

$$v_i = v(s_i)$$

$$r_i^{\pi} = \mathbb{E} \left[R_{t+1} \mid S_t = s_i, A_t \sim \pi(S_t) \right]$$

$$P_{ij}^{\pi} = p(s_j \mid s_i) = \sum_a \pi(a \mid s_i) p(s_j \mid s_i, a)$$

Bellman Equation in Matrix Form

The Bellman equation, for a given policy π , can be expressed using matrices,

 $\mathbf{v} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}$

This is a linear equation that can be solved directly:

$$\begin{aligned} \mathbf{v} &= \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v} \\ (\mathbf{I} - \gamma \mathbf{P}^{\pi}) \, \mathbf{v} &= \mathbf{r}^{\pi} \\ \mathbf{v} &= (\mathbf{I} - \gamma \mathbf{P}^{\pi})^{-1} \, \mathbf{r}^{\pi} \end{aligned}$$

• Computational complexity is $O(|S|^3)$ — only possible for small problems

- There are iterative methods for larger problems
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Solving the Bellman Optimality Equation

The Bellman optimality equation is non-linear

- Cannot use the same direct matrix solution as for policy optimisation (in general)
- Many iterative solution methods:
 - Using models / dynamic programming
 - Value iteration
 - Policy iteration
 - Using samples
 - Monte Carlo
 - Q-learning
 - Sarsa

Dynamic Programming

Dynamic Programming

The 1950s were not good years for mathematical research. I felt I had to shield the Air Force from the fact that I was really doing mathematics. What title, what name, could I choose? I was interested in planning, in decision making. in thinking. But planning is not a good word for various reasons. I decided to use the word 'programming.' I wanted to get across the idea that this was dynamic, this was time-varying—I thought, let's kill two birds with one stone. Let's take a word that has a precise meaning, namely dynamic, in the classical physical sense. It also is impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a peiorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities.

- Richard Bellman (slightly paraphrased for conciseness)

Dynamic programming refers to a collection of algorithms that can be used to compute optimal policies given a perfect model of the environment as a Markov decision process (MDP).

Sutton & Barto 2018

- We will discuss several dynamic programming methods to solve MDPs
- > All such methods consist of two important parts:

policy evaluation and policy improvement

Policy evaluation

We start by discussing how to estimate

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid s, \pi\right]$$

Idea: turn this equality into an update

Algorithm

▶ First, initialise v₀, e.g., to zero

Then, iterate

$$\forall s: \ v_{k+1}(s) \leftarrow \mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid s, \pi\right]$$

Stopping: whenever $v_{k+1}(s) = v_k(s)$, for all s, we must have found v_{π}

• Q: Does this algorithm always converge? Answer: Yes, under appropriate conditions (e.g., $\gamma < 1$). More next lecture!

Example: Policy evaluation

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R_t = -1$$
 on all transitions

Policy evaluation

	-			
	0.0	0.0	0.0	0.0
k = 0	0.0	0.0	0.0	0.0
$\kappa = 0$	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0
	0.0	-1.0	-1.0	-1.0
k = 1	-1.0	-1.0	-1.0	-1.0
κ — 1	-1.0	-1.0	-1.0	-1.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

-1.0 -1.0 -1.0 0.0

Policy evaluation

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6 .1
-9.0	-8.4	-6.1	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Policy evaluation + Greedy Improvement

0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0			-	random policy
0.0 -1.0 -1.0 -1.0	-1.0 -1.0 -1.0 -1.0	-1.0 -1.0 -1.0	-1.0 -1.0 -1.0 0.0				

$$k = 0$$

k	=	1

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	Ļ	÷	⇔
t	ţ	⇔	Ļ
t	¢	Ļ	Ļ
⇔	Ť	Ť	

${\sf Policy\ evaluation\ +\ Greedy\ Improvement\ }$

$$k = 3$$

	-2	-2.9	-5.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0
0.0	-6.1	-8.4	-9.0
0.0 -6.1	-6.1 -7.7	-8.4 -8.4	-9.0 -8.4
0.0 -6.1 -8.4	-6.1 -7.7 -8.4	-8.4 -8.4 -7.7	-9.0 -8.4 -6.1

$$k = 10$$

 $k = \infty$

Policy Improvement

- ▶ The example already shows we can use evaluation to then improve our policy
- In fact, just being greedy with respect to the values of the random policy sufficed! (That is not true in general)

Algorithm

Iterate, using

$$\begin{aligned} \forall s : \quad \pi_{\mathsf{new}}(s) &= \operatorname*{argmax}_{a} q_{\pi}(s, a) \\ &= \operatorname*{argmax}_{a} \mathbb{E} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a \right] \end{aligned}$$

Then, evaluate π_{new} and repeat

• Claim: One can show that $v_{\pi_{\text{new}}}(s) \ge v_{\pi}(s)$, for all s

Policy Improvement: $q_{\pi_{\text{new}}}(s,a) \geq q_{\pi}(s,a)$

Policy Iteration

Policy evaluation Estimate v^{π} Policy improvement Generate $\pi' \ge \pi$

Example: Jack's Car Rental

- States: Two locations, maximum of 20 cars at each
- Actions: Move up to 5 cars overnight (-\$2 each)
- $\blacktriangleright\,$ Reward: \$10 for each available car rented, $\gamma=0.9$
- Transitions: Cars returned and requested randomly
 - ▶ Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - > 2nd location: average requests = 4, average returns = 2

Example: Jack's Car Rental – Policy Iteration

Policy Iteration

• Does policy evaluation need to converge to v^{π} ?

- Or should we stop when we are 'close'?
 (E.g., with a threshold on the change to the values)
 - Or simply stop after k iterations of iterative policy evaluation?
 - ln the small gridworld k = 3 was sufficient to achieve optimal policy
- **Extreme**: Why not update policy every iteration i.e. stop after k = 1?
 - This is equivalent to value iteration

Value Iteration

▶ We could take the Bellman optimality equation, and turn that into an update

$$\forall s: \quad v_{k+1}(s) \leftarrow \max_{a} \mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = s\right]$$

▶ This is equivalent to policy iteration, with k = 1 step of policy evaluation between each two (greedy) policy improvement steps

Algorithm: Value Iteration

- ► Initialise *v*0
- ► Update: $v_{k+1}(s) \leftarrow \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = s \right]$
- **Stopping**: whenever $v_{k+1}(s) = v_k(s)$, for all *s*, we must have found v^*

Example: Shortest Path

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3
V_4			

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

 V_5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5

 V_6

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6

 V_7

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
		Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
	+ (Greedy) Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

Observations:

- Algorithms are based on state-value function v_π(s) or v^{*}(s) ⇒ complexity O(|A||S|²) per iteration, for |A| actions and |S| states
- Could also apply to action-value function $q_{\pi}(s, a)$ or $q^*(s, a) \Rightarrow$ complexity $O(|\mathcal{A}|^2|\mathcal{S}|^2)$ per iteration

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

DP methods described so far used synchronous updates (all states in parallel)

Asynchronous DP

- backs up states individually, in any order
- can significantly reduce computation
- guaranteed to converge if all states continue to be selected

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- In-place dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

for all
$$s$$
 in S : $v_{new}(s) \leftarrow \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_{old}(S_{t+1}) \mid S_t = s \right]$
 $v_{old} \leftarrow v_{new}$

In-place value iteration only stores one copy of value function

for all
$$s$$
 in S : $v(s) \leftarrow \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s \right]$

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\max_{a} \mathbb{E} \left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s \right] - v(s)$$

Backup the state with the largest remaining Bellman error

- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

- Idea: only update states that are relevant to agent
- E.g., if the agent is in state S_t, update that state value, or states that it expects to be in soon

Full-Width Backups

- Standard DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using true model of transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- ► For large problems DP suffers from curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one full backup can be too expensive

Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions (s, a, r, s') (Instead of reward function r and transition dynamics p)

Advantages:

- Model-free: no advance knowledge of MDP required
- Breaks the curse of dimensionality through sampling
- Cost of backup is constant, independent of n = |S|

Summary

What have we covered today?

- Markov Decision Processes
- Objectives in an MDP: different notion of return
- Value functions expected returns, condition on state (and action)
- Optimality principles in MDPs: optimal value functions and optimal policies
- Bellman Equations
- Two class of problems in RL: evaluation and control
- How to compute v_{π} (aka solve an evaluation/prediction problem)
- How to compute the optimal value function via dynamic programming:
 - Policy Iteration
 - Value Iteration

The only stupid question is the one you were afraid to ask but never did. -Rich Sutton

For questions that may arise during this lecture please use Moodle and/or the next Q&A session.

